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Abstract 

Nowadays, microplastics (MP), plastic particles smaller than 5 mm, are a hot topic in 

environmental science field due to their abundance and widespread in the environment and food 

chain, including human organism. The greatest concern is potential harmful and toxic effect MP 

can have on both the environment and human health. Additionally, MP can adsorb and transport 

other pollutants, possibly increasing overall toxicity compared to the toxicity of isolated MP and 

pollutants. Hence, it is important to understand the adsorption process to properly assess the 

potential risk of MP. Experimental results show that adsorption is mainly governed by weak 

hydrophobic, electrostatic, van der Waals and π-π interactions, and hydrogen bonds. However, due 

to system complexity and the many influencing factors, the results often lack consistency and 

reproducibility, which makes it impossible to draw clear conclusions and build a predictive model 

for MP adsorption. The computational chemistry studies on the adsorption of MP are still at the 

early stages, but they are believed to provide further insights into the adsorption mechanism.  

In this thesis, polyethylene terephthalate (PET) MP was chosen as one of the most 

frequently found types of MP in the environment. Adsorption was studied using quantum 

mechanical (QM) and molecular dynamics (MD) methods. QM study revealed the interactions are 

weak and local, mainly dependent on the pollutants ability to form multiple contacts with MP. 

Further quantitative structure activity/property relationship (QSA/PR) modelling showed the key 

pollutants’ properties governing the adsorption can be correlated to the size of pollutants and 

number of proton donor/acceptor functional groups. On the other hand, MD study showed that, 

when the explicit water molecules are included, the adsorption is mainly controlled by the 

pollutant’s relative affinity for water and MP. Additionally, the affinity also depends on the 

structure of MP, as more fragmented model showed stronger capacity compared to unfragmented 

MP model. MD results showed similar trend as the experimental results. However, the difference 

in calculated interaction energies is could not be quantitatively correlated with the difference in 

adsorption capacities. Overall, computational studies showed a great potential as a tool to help to 

understand adsorption mechanism, although more work is needed to further develop the model’s 

accuracy. 

 

Keywords: adsorption, DFT, MD, microplastic, polyethylene terephthalate, QSA/PR  



Sažetak 

Mikroplastika (MP) su čestice polimera manje od 5 mm koje su danas vrlo popularna tema u 

istraživanju okoliša zbog velike količine i rasprostranjenosti u okolišu i hranidbenom lancu, pa čak 

i u ljudskom organizmu. MP može imati štetne i toksične učinke na okoliš i ljudsko zdravlje. Osim 

toga, MP može adsorbirati i prenositi druga štetna onečišćivala što može dovesti do povećanja 

njihove ukupne toksičnosti u odnosu na toksičnost same MP i onečišćivala. Upravo iz tog razloga 

je važno detaljno proučiti proces adsorpcije kako bi se moglo preciznije procijeniti potencijalne 

rizike povezane s MP. Dosadašnja eksperimentalna istraživanja su pokazala da adsorpciju 

organskih onečišćivala na MP kontroliraju slabe interakcije poput hidrofobnih, elektrostatskih, van 

der Waalsovih, π-π interakcija i vodikovih veza. S obzirom na složenost sustava i veliki broj 

čimbenika koji utječu na adsorpciju, rezultati iz literature su često nedosljedni te nisu 

reproducibilni. To otežava donošenje zaključaka i izradu pouzdanih predikcijskih modela za 

adsorpciju organskih onečišćivala na MP. Metode računalne kemije omogućuju dublje 

razumijevanje mehanizma adsorpcije te se sve više počinju koristiti u ovom području istraživanja.  

 U okviru ovog rada, odabran je poli(etilen-tereftalat) (PET), kao jedan od najčešćih tipova 

MP u okolišu. Za istraživanje korištene su kvantno-mehaničke (QM) i metode molekularne 

dinamike (MD). QM proračuni pokazali su da su interakcije između MP i onečišćivača slabe, 

lokalne interakcije te da adsorpcija ovisi o broju interakcija koje onečišćivalo može uspostaviti s 

MP. Modeliranjem odnosa strukture i aktivnosti/svojstva (QSA/PR) utvrđeno je da su ključna 

svojstva onečišćivala koja kontroliraju adsorpciju, povezana s veličinom molekule i brojem proton 

donora/akceptora. MD simulacije koje uključuju eksplicitne molekule vode su pokazale da 

adsorpcija značajno ovisi o razlici između afiniteta onečišćivala za molekule vode i za MP. Također 

su pokazale da struktura MP ima značajnu ulogu s obzirom na to da je fragmentirani model PET-a 

pokazao veću sposobnost adsorpcije od nefragmentiranog. Rezultati MD simulacija u skladu su s 

eksperimentalnim opažanjima, iako razlike u izračunatim energijama interakcije nisu bile u 

izravnoj kvantitativnoj korelaciji s razlikama u adsorpcijskom kapacitetu. Zaključno, računalne 

metode pokazuju velik potencijal u istraživanju adsorpcijskih mehanizama MP, no potrebna su 

dodatna istraživanja i razvoj modela kako bi se povećala njihova točnost i primjenjivost. 

 

Ključne riječi: adsorpcija, DFT, MD, mikroplastika, poli(etilen-tereftalat), QSA/PR 
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1.  Introduction 

Microplastics (MP) are synthetic polymer particles smaller than 5 mm in diameter[1]. They can be 

intentionally produced as microbeads (primary MP) or they can be derived from the fragmentation 

of larger plastic waste (secondary MP). MP have a low degradation rate and are very abundant, 

persistent, and widespread in the environment. By now, they have been found in every 

environmental compartment,[2–4] including the most distant places as the north and south poles[5,6]. 

The most found types of MP in the environment are polyethylene (PE), polypropylene (PP), 

polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC). Owing to their 

small size, MPs can easily be inhaled, ingested, or even absorbed by tissue or roots and thus enter 

the food chain and further propagate.[7–10] Once in the organism, they can cause a series of negative 

effects including intestinal damage, liver necrosis and death.[11–13] MPs have already been found in 

human blood, lungs and placenta[14–16] proving they can penetrate human tissue. Due to the 

potential risks they may pose to both environment and human health, MP are now considered a 

new class of contaminants of emerging concern (CECs)[4] and a lot of research is aimed to better 

understand the fate and behaviour of MPs in the environment.  

Another concerning factor is MP ability to adsorb other contaminants from the environment 

and to transport them within the ecosystem.[17,18] Co-contamination of MP with organic pollutants 

might increase the overall toxicity compared to the toxicity of isolated MP and pollutants.[19–21] 

Therefore, to properly evaluate the potential risk of MP in the environment it is important to 

understand the adsorption process. Currently, a lot of studies aim to understand the complex 

mechanism of MP adsorption. So far, they have shown the adsorption of organic contaminants by 

MP is physical and governed by weak intermolecular forces.[22] However, there are many factors 

controlling adsorption behaviour making it hard to differentiate the individual effects to properly 

describe adsorption mechanism. Additionally, there is no consistent way to design the experiment 

and interpret the results which leads to a lot of variations in results and draws to different 

conclusion. In order to better clarify the adsorption on molecular level, computational chemistry 

are more often used. Although still at its early stages, studies incorporating quantum chemistry and 

molecular dynamics simulations showed  promising results in helping to understand the adsorption 

mechanism of MP. For that reason, it is important to expend the research of MP’s adsorption in the 

field of computational chemistry.  
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Therefore, this thesis aimed to integrate computational chemistry approaches, including 

quantum mechanics and molecular dynamics, into the study of MP adsorption mechanism. The 

focus of quantum mechanics study was to address the nature of interaction between MP and organic 

pollutants, and to understand the role of specific functional groups governing the sorption 

mechanism. The study also seeks to correlate the computational approach with experimental results 

to improve the interpretation of adsorption behaviour. Additionally, to develop cost-effective 

predictive methodologies to reduce the need for extensive experimental work.  
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2.  Literature review  

2.1.  The world of (micro)plastic 

Since its discovery, plastic has effectively replaced many materials due to its remarkable properties, 

including low density, inertness, impermeability, corrosion resistance, and excellent electrical and 

thermal insulation. Above all, plastic's ease of production and low cost have contributed 

significantly to its widespread use. Mass production of plastic began in 1950 and has continued 

ever since. In 2020, the demand for plastic in Europe alone reached 49.1 million tons, increasing 

to 58.7 million tons in 2022, which represents only 15% of the global plastic demand.[23] The most 

common types of polymers used in plastic are high-density polyethylene (HDPE), low-density 

polyethylene (LDPE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), and 

polyethylene terephthalate (PET) whose monomeric units are shown in Figure 2.1. The exponential 

growth of plastic production since 1950 to 2022 and the demand for these raw plastic materials by 

polymer type in world is illustrate in Figure 2.2, according to market research and statistics from 

Plastics Europe.[23]  

 

Figure 2.1. Structures of monomers of the most produced polymers.  

 

The exponential growth in plastic production is naturally followed by the exponential 

growth in plastic waste. Plastics are generally characterised by low degradability, which can last 

for centuries. This characteristic poses an ecological problem as it leads to an accumulation of 
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plastic waste in the environment. Although plastic is very resistant, the environmental stressors, 

including chemical, biological and physical stressors can lead to the deterioration of structural 

properties and increase the fragility and brittleness of the material. Finally leading to the 

fragmentation of plastic to smaller particles of micro size called microplastics. 

 

Figure 2.2. The exponential growth of the plastic production and the global demand for the raw plastic 

material according to the type of polymer in 2022, according to the market research from Plastic 

Europe.[23]  

 

Microplastics (MP) are defined as synthetic polymer particles with a diameter of less than 

5 millimetres. Although the lower limit of microplastic size is not clearly defined, particles smaller 

than 1000 nm are commonly referred to as nanoplastics (NP).[24] Sources of MP can be divided to 

primary MP and secondary MP. Primary MP are those already produced in the form of 

microparticles to be used in personal care products, especially in exfoliants, detergents, as a 

fertiliser additive, for medical devices, as a blasting agent, in adhesives, as a raw material to 

produce other plastic products and others. In 2019, the European Chemicals Agency (ECHA) 

presented a proposal to limit the production of primary MP and in September 2023, the European 

Commission adopted the restrictions of primary MP intentionally added to products under the 

European Union chemical legislation REACH (Registration, Evaluation, Authorisation and 

Restriction of Chemicals).[25] he mayor source of MP in the environment are secondary MP. 
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Secondary MP result from the fragmentation of larger plastics and represent a serious 

environmental problem due to the number and variety of possible sources. Fragmentation can result 

from mechanical damage during the manufacture and use of plastic products or from the effects of 

the environment on plastic waste.[26] As MP are small and light, they can be easily transported by 

wind, rain, rivers, oceans, etc. The largest amount of plastic particles found consisted of PE, PP, 

PS, PET and PVC. Traces of MP have been discovered even in the most remote places in the world, 

from the top of the Himalayas[27] and the Pic du Midi[28] in the Pyrenees to the depths of the Mariana 

Trench.[29] Materić et al.[5] even detected MP in samples of Antarctic ice in the south to Greenland 

ice in the north, taken at a depth of 14 metres.  

To date, MP has been detected in all components of the environment, including air, soil, 

freshwater and oceans.[30] The main sources of airborne microplastics are synthetic fibres, car tyres 

and urban dust.[30] The concentration of MP in outdoor air is generally lower than the concentration 

of MP indoors, which could be due to the release of plastic particles from indoor furniture, textiles, 

packaging materials or other indoor sources, as well as a slower removal rate. However, a 

systematic review by Eberhard et al.[31] shows that outdoor exposure is highly dependent on the 

location. By far the highest concentrations of MP are therefore found on roadsides and in urban 

areas with high traffic volumes. Significant amounts of MP are found in soil, particularly in 

agricultural soils, where the main sources are plastics residues from mulching, municipal waste, 

plastic-coated fertilisers and sewage sludge.[32] Once in the soil, MP can contaminate food, 

increasing the likelihood of human exposure. It can also come into contact with the pesticides used, 

which can alter their toxicity and impact on soil and biota. The sources of microplastics in 

freshwater and oceans are numerous, from direct fragmentation of waste to runoff from landfills, 

the air, wastewater treatment plants and more. The concentration of microplastics in freshwater 

and oceans depends on the region, human activities, wind and ocean currents.[30,33,34] MP have been 

detected in tap water and bottled water, showing that MP can be transferred from natural sources 

despite drinking water treatment plants. A review by Gambino et al.[35] shows that the concentration 

of MP in bottled water is higher than in tap water, suggesting that there may be additional 

contamination from the packaging process.  
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2.1.1.  Microplastic as contaminants of emerging concern 

There is growing evidence of the presence of microplastics and their harmful effects on the 

environment, but also on organisms and humans. As concern about microplastics grows, so does 

the number of studies on the fate, behaviour and toxicity of microplastics in the environment 

(Figure 2.3).[36]  

 

Figure 2.3. Number of published papers per year based on a search of keywords microplastic* OR 

nanoplastic* AND adsorption in Scopus database. 

 

Most research focusses on microplastics in inland waters and oceans. Fish, crabs, aquatic 

mammals and other aquatic organisms can ingest MP.[37–40] MP have also been detected in various 

terrestrial animals, both wild,[41–43] and domestic animals,[7,44,45] proving that MP are present in the 

food chain and affect the entire food web.[46] In addition, traces of MP have also been found in 

fruits and vegetables that we eat, where it most likely enters the through direct absorption from the 

water and soil via the roots.[9,47–52] Humans are also exposed to MP, which raises the question of 

its potential health risk. MP can enter the human organism either by ingestion or inhalation. Several 

studies have already detected MP in lung tissue, especially PE, PP and PET MP.[15,53] MP are found 

in human faeces, as the majority of ingested MP are excreted from the organism via the 

gastrointestinal tract.[54,55] Nevertheless, a study by Leslie et al.[14] showed the presence of MP 
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traces in human blood. PET was the most common type of MP found in blood samples, followed 

by PS and PE in a size range between 700 nm and 500 µm. The maximum concentrations were 2.4 

µg mL–1 for PET, 4.8 µg mL–1 for PS and 7.1 µg mL–1 for PE. This study proves that MP can be 

transported through the bloodstream in the organism and reach other organs, with the highest MP 

concentration found in the colon and liver.[56] A study by Ragusa et al.[16] was the first to detect 

traces of MP in the placenta. Since then, further research has shown the presence of different types 

of MP in the placenta[50,57] and in breast milk.[58] These recent discoveries have raised serious 

concerns about the effects of MP on foetal development and infant exposure to MP.  

The presence of MP in the organism can potentially have a toxic effect. Studies on 

freshwater zebrafish (lat. Danio rerio) have shown that the presence of microplastics can lead to 

intestinal and liver damage, oxidative stress and disruption of reproductive function, which can 

ultimately lead to death.[11,13] MP also have cytotoxic effect. Rubio et al.[59] studied the effect of PS 

MP on various human haematopoietic cell lines and showed that PS MP can induce intracellular 

oxidative stress and DNA damage. The cytotoxicity of MP varies depending on the size, type and 

dose of MP, type of cells, exposure time and presence of co-contaminants.[60] Studies to date are 

limited to in vivo studies with model organisms and in vitro studies with different cell types. 

However, there is no evidence of a direct effect of MP on human health,[61] but due to the increasing 

evidence of the presence of plastic in humans and its potentially harmful effects on the environment 

and organisms, MP is now considered a contaminant of emerging concern. 

Another factor of concern is the co-contamination of MP with other environmental 

pollutants, microorganisms or heavy metals.[62] MP may contain additives that are intentionally 

added during the production of the plastic through the refining process. The additives can be 

transported together with MP and released into the environment, leading to a toxic effect.[63,64] In 

addition to the additives, MP can also adsorb other environmental pollutants such as heavy 

metals[65] and organic pollutants[66] on its surface. Studies show that the combined effect of MP 

with additives or adsorbed pollutants can lead to an increase[19,21] or decrease in their overall 

toxicity.[62] The co-contamination of MP with additives and environmental pollutants depends on 

the mechanism of their adsorption on the MP surface and desorption. To better understand the joint 

effect of MP and additives or adsorbed pollutants and to assess the potential risk of MP, it is 

therefore crucial to understand the adsorption mechanism. The state of the art on the adsorption 

mechanism of MP and organic pollutants is presented in the following Section 2.2.
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2.2.  Adsorption of organic pollutants on microplastic 

Previous studies have shown that the adsorption of organic pollutants on microplastics is a weak 

physical sorption controlled by weak intermolecular interactions, mainly hydrophobic interactions, 

hydrogen bonding, electrostatic attraction and repulsion forces, van der Waals forces and π-π 

interactions (Figure 2.4).[22,67] However, the extent of each interaction and its contribution to the 

mechanism of adsorption is not yet known, so further research is needed in this area. 

Hydrophobic interactions are one of the most important mechanisms influencing the 

adsorption of hydrophobic organic pollutants on MPs in water. The hydrophobicity of an organic 

molecule is usually expressed as an octanol/water partition coefficient (𝐾ow). A higher value means 

a higher hydrophobicity. The adsorption capacity of MP for hydrophobic pollutants showed a 

positive correlation with the log 𝐾ow value in several studies.[68,69] In a study by Li et al.,[70] 

hydrophobic antibiotics had a higher affinity for PP, PS, PE and PVC MP, but not for polyamide 

(PA) MP. PA MP is the only one of the materials tested that has an amide group, and its higher 

affinity for more polar antibiotics is attributed to its ability to form hydrogen bonds. 

Hydrogen bonds are weak interactions in which a hydrogen atom is located between two 

electronegative atoms. Several other studies have shown the importance of hydrogen bonding, as 

PA MP has a significantly higher adsorption capacity for polar antibiotics such as amoxicillin, 

tetracycline, ciprofloxacin,[70] sulfamethoxazole,[71] and sulfamethazine[72] compared to other types 

of plastics. 

Electrostatic interactions are interactions between two charged molecules. Under natural 

environmental conditions, the surface of MP generally carries a net negative charge.[70,73–75] 

Therefore, the repulsive electrostatic forces can act between MP and negatively charged organic 

pollutants and the attractive forces can contribute to the adsorption of positively charged organic 

pollutants. The adsorption of charged pollutants depends on the pH value of the water. In the 

adsorption of negatively charged triclosan on PVC, the adsorption capacity of PVC decreased 

drastically with increasing pH value.[76] The same phenomenon was observed in the adsorption of 

chlorophenol on PET MP, proving that the process was controlled by electrostatic repulsion.[77] On 

the other hand, pH value had no significant effect on the adsorption of neutral diethyl and dibutyl 

phthalate on MP, as no electrostatic interactions were involved.[78]  
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Van der Waals forces are weak nonspecific intermolecular forces. Xu et al.[73]  showed that 

the adsorption of hydrophilic sulfamethoxazole on PE MPs was linear, albeit they were both 

negatively charged under the experimental conditions. Neither hydrophobic nor electrostatic 

interactions could explain the sorption which is likely governed by van der Waals interactions. 

Other studies also confirm that van der Waals forces may play an important role in the sorption 

mechanism.[72,79] 

π-π interactions are a special type of dispersion force that occur between unsaturated 

benzene rings or polycyclic molecules. The higher adsorption of pollutants such as diethyl and 

dibutyl phthalate on PS MP compared to other types of MP is associated with their ability to form 

π-π interactions.[68,78]  

 

Figure 2.4. Interactions of MP and organic pollutants in water. 

 

2.2.1.  Factors influencing microplastics adsorption capacity 

One of the major reasons why there is still a lot of questions concerning adsorption mechanism of 

microplastic, albeit the abundance of current research, is the complexity of the system and the large 

number of factors that can affect adsorption mechanism.[80,81] The mechanism depends on the 

physicochemical properties of both microplastic and organic pollutants but also on environmental 

factors.  
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As mentioned before, hydrophobicity of pollutants is very important factor for the 

adsorption of organic pollutants onto microplastics. Li et at. proved the hydrophobic interactions 

are the main mechanism for the adsorption on PE, PP and PS.[82] However, hydrophilic compound 

can also be adsorbed by other types of interactions. The adsorption of ionizable compound depends 

on pH value of the solution. Positively charged pollutants will be more readily adsorbed than 

negatively charged as the surface of MP is negative under the natural environmental conditions. 

[73,74] The ability to form hydrogen bond will favour the adsorption onto hydrogen donor and 

acceptor groups on the surface of microplastic.[70–72]  

The adsorption capacity of MP, its behaviour in the environment and the potential threat is 

largely dependent on the type of polymer in MP and its chemical and structural properties.[26] The 

most commonly used types of plastics in adsorption studies are PE, PS, PVC, PP and PET.[80] Some 

of their properties are listed in Table 2.1. Polymers are long-chain molecules consisting of many 

repeating organic units (monomers) connected by covalent bonds.[83] The chains in the structure 

are held together by weak interactions, such as hydrogen bonds, van der Waals interactions, 

hydrophilic or hydrophobic interactions.  

Polymers as PE, PP and PET have semi-crystalline structure. Semi-crystalline structure 

means their structure contains crystalline regions, where segments of chains are properly arranged, 

emersed in amorphous region, where chains are oriented randomly. When polymers are heated, 

they can transform from solid (glassy) state to more flexible rubbery state. The temperature of this 

transformation is called glass transition temperature (𝑇g).[84] PE and PP have low glass transition 

temperature, so they are soft and flexible at room temperature. In contrast, PET, PVC, and PS with 

high glass transition temperature are rigid. The state of the polymer might affect adsorption 

capacity as polymers in a rubbery state are more flexible.[85] However, crystallinity and rubbery 

state are not essential factors.[70] Size of the MP and the porosity of surface are very important 

factors.[86] Smaller particles and particles with more developed pore structure have larger specific 

surface area (SSA) and, therefore, more adsorption sites available. Ma et al.[76] showed the 

adsorption capacity of smaller PVC MP was 12.7 mg g–1, while the adsorption capacity of larger 

PVC MP was 8.98 mg g–1 for triclosan. Nonpolar polymers such as PE, PP and PS are strongly 

hydrophobic, and they showed larger adsorption capacity for hydrophobic 17β-estradiol than polar 

PVC. On the contrast, adsorption capacity of highly polar PA for 17β-estradiol was the highest 

which is contributed to the formation of hydrogen bonds.[87]  
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Table 2.1. Physicochemical properties of the most used types of plastics. 𝑇g is the glass transition 

temperature, 𝑇m is the temperature of melting, ρ is the average density and χ is the percent crystallinity.[88] 

Name Abb. Tg / °C Tm / °C ρ / g cm–1 χ / % polarity 

High-density polyethylene HDPE –110 130 0.96 60-90 nonpolar 

Low-density polyethylene LDPE –100 110 0.92 30-50 nonpolar 

Polypropylene PP –25 170 0.90 30-50 nonpolar 

Polystyrene PS 95 240 1.04 0 nonpolar 

Polyvinyl chloride PVC 81 227 1.39 0 polar 

Polyethylene terephthalate PET 70 240 1.33 10-30 polar 

 

MPs are very persistent in the environment because they are highly resistant to the 

degradation process. However, various external factors can still cause ageing of MPs by changing 

their physicochemical properties and consequently adsorption behaviour. The most important 

process of MPs degradation is photooxidation.[89] Absorption of UV light causes chain scission and 

formation of free radicals, following the reaction with oxygen. The reaction is autocatalytic and 

can further self-propagate leading to the formation of oxygen containing functional groups and 

linking of chains.[90] General mechanism of polymer photooxidation is shown in Figure 2.5. 

Carbonyl groups can act as chromophores through Norrish-type 1 and Norrish-type 2 mechanism. 

Norrish type 1 leads to the chain scission and the formation of carbon monoxide, while Norrish 

type 2 reaction leads to the formation of vinyl groups and aldehydes (Figure 2.6).[91,92] 

 

Initiation:  Polymer →R⋅+ R⋅ 

Propagation:  

 

R⋅+ O2→ROO⋅ 

ROO⋅+ RH→ROOH+R⋅ 

Chain branching: 

 

ROOH→RO⋅ + OH⋅  

RH+OH⋅ →R⋅ + H2O 

RO⋅ →Chain-scission 

Termination:  

 

ROO⋅ + ROO⋅ →Cross-linking 

ROO⋅ +R⋅ →Cross-linking 

R⋅+ R⋅ →Cross-linking 

Figure 2.5.General mechanism of photooxidation. 
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Figure 2.6. Mechanism of polymer photooxidation: a) chain-scission and propagation; b) Norrish type I; c) 

Norrish type II mechanism.[93] 

 

The surface of aged MP is more fragile with more visible pores and cracks[94] and larger SSA with 

more adsorption sites available.[95,96] FTIR spectra of PP, HDPE and LDPE showed wider peaks in 

the regions 3300-3500 cm–1 and 1610-1800 cm–1 after UV irradiation which corresponds to the 

formation of hydroxyl carbonyl and vinyl groups.[97] Wu et al.[98] showed a linear correlation of 

oxygen/carbon surface ratio (O/C ratio) and the duration of UV irradiation of PP MPs. More 

oxygen containing groups make MP more hydrophilic which favours the adsorption of hydrophilic 

contaminants.[99] Oxidation of PET, PA and PP MPs increased their hydrophilicity and the 

adsorption capacity for sulfamethoxazole by 187.8%, 64.6% and 198% respectively.[100] 

Adsorption of antibiotics amoxicillin and chlortetracycline on the surface of tire wear particles and 

PP MPs was also higher after ageing.[101] Physicochemical changes caused by ageing affect the 

mechanism of adsorption. In the study by Yao et al.,[102] the main interactions controlling 

adsorption of pharmaceuticals and personal care products on pristine PP MPs were hydrophobic 

interactions, while hydrogen bonds and electrostatic interactions controlled the adsorption on 

chemically oxidized PP. As ageing impacts the adsorption mechanism it also influences the 

potential risk of MP in the environment. Therefore, it is important to further investigate adsorption 

behaviour of aged MP.[103]  
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The adsorption mechanism of MPs for organic pollutant depends on the type of environment 

and various environmental factors.[82,104] Li et al.[70] showed the adsorbed amount of five antibiotics 

on five types of MPs was higher in freshwater than in seawater. Lorca et al.[105] also concluded the 

adsorption was more favoured in freshwater. Higher concentration of ions might compete for the 

sorption site and thus reduce the adsorption capacity.[99] On the other hand, increased salinity might 

increase the sorption capacity by lowering the solubility of organic pollutants (“salting out”)[76,98] 

thus increasing the adsorption capacity in seawater. Zhang et al.[95] found out the adsorption amount 

of oxytetracycline was higher in the presence of CaCl2 than of NaCl or Na2SO4 which is probably 

due to the ability of Ca2+ ions to form ternary complex between oxytetracycline and MPs and 

enhance adsorption. Dissolved organic matter (DOM) present in natural water might also have a 

significant effect on the adsorption. Mo et al.[106] showed the presence of DOM has a negative 

effect on the adsorption of carbofuran on PE which can be attributed to the higher affinity of DOM 

to pesticides. On the other hand, presence of humic acid promoted the adsorption of oxytetracycline 

on PS MP probably by acting as a bridge.[95] The change of pH value can affect dissociation of 

organic pollutants.[76,107] Consequently, adsorption capacity of dissociable pollutants will be lower 

at higher pH value due to electrostatic repulsions between negatively charged MP and pollutants. 

The change of pH value does not affect the adsorption of non-ionizable compounds.[78]  

 

2.2.2.  Experimental approach to study the adsorption 

Adsorption is a surface process in which a molecule of solute or gas (adsorbate) is transferred from 

a liquid to a solid surface (adsorbent). The adsorption can be chemical (chemisorption) or physical 

(physisorption). Chemisorption leads to the formation of new chemical bonds between the 

adsorbent and the adsorbate. In physisorption, the adsorbate and the adsorbent interact without 

bonding.[108] The amount of adsorbate adsorbed in a solution is calculated as follows:  

 𝑞e =
𝑐0 − 𝑐e

𝑚
× 𝑉 (2.1) 

where 𝑞e [mg g–1] is the equilibrium adsorption capacity, 𝑐0 [mg dm–3] is the initial concentration 

of the adsorbate in a solution, 𝑐e [mg dm–3] is the final concentration of the adsorbate in a solution, 

𝑚 [mg] is the mass of the adsorbent, and 𝑉 [dm3] is the volume of a solution. The adsorption 

behaviour of microplastics and organic pollutants is generally studied experimentally by fitting the 
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data of the adsorption capacity to the kinetic or isothermal models. The way in which the data fit 

the different models provides information about the possible nature and mechanism of adsorption. 

Adsorption kinetics describe the rate of an adsorption process by analysing the change in 

the amount of adsorbate adsorbed by the adsorbent over time. If the amount of adsorbate adsorbed 

is constant over time, the adsorption process has reached a state of equilibrium. The study of 

adsorption kinetics is the first step in determining the time required for the process to reach 

equilibrium under the experimental conditions. In a study by Raznajatovo et al.,[69] adsorption to 

PE reached equilibrium after approximately 96 hours for sertraline, 24 hours for propranolol, and 

3 hours for sulfamethoxazole. However, in a study by Xu et al.,[73] 24 hours were required for the 

adsorption of sulfamethoxazole on PE MP to reach equilibrium. The different results show the 

influence of the experimental conditions on the sorption kinetics and the importance of preliminary 

kinetic investigations for estimating the adsorption equilibrium time. The study of adsorption 

kinetics can give us an insight into the efficiency of adsorption, the adsorption rate and the rate-

limiting step. In most studies, the data are only fitted to pseudo-first order (PFO) and pseudo-

second order (PSO) kinetic models derived from the following equation:  

 𝑣 =
𝑑𝑞t

𝑑𝑡
= 𝑘1(𝑞e– 𝑞t)

𝑛 (2.2) 

where 𝑣 [mg g–1 s–1] is the adsorption rate, 𝑞e [mg g–1] is the equilibrium adsorption capacity, 𝑞t 

[mg g–1] is the amount of adsorbate adsorbed by the unit mass of adsorbent in a time 𝑡 [s], 𝑛 is the 

order of the mechanism, and 𝑘 [(g mg–1)n s–1 ]  is the rate constant. In general, the experimental 

data are transformed and fitted by linear regression methods. However, caution is needed as this 

approach might favour the PFO model over the PSO model, which is not the case when a non-

linear approach is used.[109] Moreover, J. Simonin[110] has pointed out that in most studies, kinetic 

data near equilibrium or at equilibrium are included in the models, which favours the linear PSO 

model over the linear PFO model and might lead to incorrect conclusions. In this sense, Wang et 

Wang[85] showed that the adsorption of pyrene on PE, PS and PVC MPs before reaching 

equilibrium agrees well with the PFO model. However, the results fitted PSO better when the data 

from equilibrium were also fitted. A good fit to PSO is sometimes incorrectly associated with 

chemisorption,[96,111,112] such as in a study by Hu et al.[113] in which the adsorption of 17β-estradiol 

on MP is labelled as chemical due to the better fit of the data to PSO than to PFO. However, it is 

worth noting that PSO alone cannot indicate chemisorption without additional experimental 

evidence, such as from FTIR and XPS measurements.[76,99] PFO and PSO are used to determine the 
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adsorption rate, but do not provide information about the mechanism of adsorption. To understand 

the mechanism and determine the rate-controlling step, the intraparticle diffusion (IP) model is 

often used. In most studies, the IP model suggests that adsorption on MP is controlled by both 

intraparticle and film diffusion processes.[72,76,77,95] In the study by Wang et al.,[114]  the adsorption 

mechanism of tetracycline on virgin PE MP was also controlled by both intraparticle and film 

diffusion. However, when PE MP was exposed to environmental factors and a biofilm developed 

on its surface, the mechanism changed, and film diffusion was the only rate-limiting step. 

The adsorption isotherm describes the relationship between the adsorption capacity and the 

concentration of the adsorbate in a state of equilibrium at a constant temperature and a constant pH 

value (𝑞e vs. 𝑐0). Isotherms are used to predict the amount of adsorbate that can be adsorbed onto 

an adsorbent and the adsorption equilibrium constant. They can also help to elucidate the 

mechanism of adsorption. There are many isotherm models that have been formulated either 

theoretically or empirically to fit the experimental adsorption data. The Langmuir, Freundlich and 

linear isotherms are the most commonly used models to fit the adsorption data of MP and organic 

pollutants. The Langmuir adsorption model[115] represents adsorption in a single layer on a 

homogeneous surface. It assumes that all adsorption sites are uniform and the adsorbates are evenly 

distributed between them. It also assumes that there are no interactions between two adsorbates, so 

that adsorption can only take place on the surface of the adsorbent in a monolayer.[116] The 

Langmuir adsorption equation is as follows:  

 𝑞e =
𝑄max𝐾L𝑐e

1 + 𝐾L𝑐e
 (2.3) 

where 𝑞e [mg g–1] is the equilibrium sorption capacity, 𝑄max [mg g–1] is the maximum adsorption 

capacity, 𝐾L [dm3 mg–1] is the Langmuir adsorption constant and 𝑐e [mg dm–3] is the equilibrium 

concentration of the adsorbate. Freundlich adsorption model[117] does not assume an ideal surface 

of the adsorbent. The surface is heterogeneous, i.e. the adsorption sites on the surface can have 

different affinities to the adsorbates. Since interactions between two adsorbates are possible, the 

model is not limited to single-layer adsorption and can also be used to describe multi-layer 

adsorption. Freundlich adsorption equation is represented as follows:  

 𝑞e = 𝐾F𝑐e
1/𝑛

 (2.4) 

where 𝐾F [dm3 mg–1]n is the adsorption constant, and 1/𝑛 is the adsorption intensity. The 

adsorption intensity, 1/𝑛, represents the non-linearity factor. It can take values between 0 and 1.  
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Lower 1/𝑛 value indicates a more heterogeneous surface. Values above 1 indicate unfavourable 

sorption. The linear model is similar to the Freundlich model, in which the adsorption intensity is 

equal to 1. In the linear adsorption model, the adsorption capacity increases proportionally with the 

increasing concentration of the adsorbate.[118] The linear isotherm equation is expressed as follows:  

 𝑞e = 𝐾d𝑐e (2.5) 

where 𝐾d [dm3 mg–1] is the linear adsorption constant. This model can describe the adsorption on 

an uniform surface at sufficiently low concentration when the adsorbates cannot feel one 

another.[119] The linearity of adsorption varies amongst different types of polymers and 

pollutants.[79] The adsorption isotherm of sulfamethazine on PA, PE, PVC, PS and PET MP showed 

a good fit to the linear model.[72] The linear model also described well the adsorption of amoxicillin 

and sulfadiazine on the same five types of MPs, while the nonlinear Freundlich model was a better 

fit for the adsorption of tetracycline, ciprofloxacin and trimethoprim.[70] Wang et al.[75] compared 

the adsorption isotherms of tetracycline on virgin and aged PE MPs and showed that the Freundlich 

model was the best to describe the adsorption by virgin and air-exposed MPs, while the Langmuir 

model was better at describing the adsorption by water and soil-exposed MP. Dubinin-

Radushkevich and Temkin[120,121] isotherms are also used in studies on the microplastic adsorption 

capacity. The Dubinin-Radushkevich model is used to explain adsorption by pore-filling 

mechanism.[122–124] It can estimate the mean free energy and distinguish the type of adsorption 

(physisorption or chemisorption). Li et al.[125] used Dubinin-Radushkevich to calculate the mean 

adsorption energy for diclofenac and PS MPs. The adsorption energy obtained was 241 kJ mol–1 

which was attributed to chemisorption. However, this study neglects the fact that the Dubinin-

Radushkevich model was developed for gas/solid interaction and ignores the effect of solvent, 

chemical species of the solutes, surface charge and other factors affecting solute/solid adsorption. 

Therefore, the results may not be accurate.[123] The computation study by Cortés-Arriagada et 

al.[126] suggests that the high mean adsorption energy is due to several pairwise interactions and is 

incorrectly associated with chemisorption.  

As there is no standardised way to study the adsorption of organic pollutants on MP, the 

experimental results are still subject to high variations. For example, the 𝐾d values of 

sulfamethoxazole adsorption on PE in three different studies were 700 dm3 kg–1,[69] 592 dm3 kg–

1,[73] and 30 dm3 kg–1.[71] High variation in results, the different experimental designs, the use of 
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different models from study to study and the different interpretations of results make it difficult, 

almost impossible, to compare the results and draw clear conclusion.  

 

2.2.3.  Computational approach to study the adsorption 

Theoretical research into the adsorption behaviour of microplastics is still at an early stage. 

Computational research can help to clarify the experimental results and gain a deeper 

understanding of the adsorption process at the molecular level, which is why research in the field 

of computational chemistry must be expanded. Density Functional Theory (DFT) methods are now 

increasingly used in combination with experimental results to understand the electronic properties 

of organic pollutants and to find the correlation with the results obtained or to directly calculate the 

interaction energies with MP and correlate them with the adsorption capacity. However, the 

methodology and the way in which the initial structures for the calculations are set up are still 

questionable. The combined experimental and DFT studies mostly represent the MP only as an 

oligomeric chain.[106,127–131] Although some studies show that the adsorption capacities and the 

calculated interaction energies are correlated in this type of approach, the research of Cortes-

Arriagada et al.[132,133] showed that this approach strongly neglects the importance of the dispersion 

interaction in favour of the electrostatic interactions. Their research also showed that the organic 

pollutants can form multiple interactions with neighbouring parts of the MP, all of which contribute 

to the total interaction energy.[126,134,135] In this sense, the nano- or microparticle model of MP 

should be used instead of a simple oligomeric chain.  

The dynamics of adsorption can be studied by molecular dynamics (MD). Similar to DFT 

studies, MD is now mostly used in combination with experimental results to correlate the 

interaction energies with the adsorption capacity.[136–139] However, MD simulations can contribute 

much more to the understanding of the mechanism of MP adsorption and the effects of the 

environment.[140] The study by Feng et al.[141] showed that the adsorption of benzo[α]pyrene is 

higher for PS-MP due to its ability to form sandwich-like π-stack structures. It was also shown that 

humic acid, which occurs naturally in water, can adsorb to the surface of MP and interact with 

benzo[α]pyrene. This prevents the direct interaction between MP and benzo[α]pyrene. Liu et al.[142] 

showed that the adsorption capacity of MP in seawater is greater for aromatic carbonates than in 

pure water, which is consistent with the experimental results. The simulation showed that this is 

probably due to the more porous structure of MP in seawater than in pure water, where the pores 
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can serve as additional adsorption sites. Furthermore, adsorption in seawater can be additionally 

enhanced by cations, which could act as a bridge between MP and aromatic carbonates. MD has 

proven to be a very promising tool to study adsorption on MP and although the number of studies 

using it is still very small, it is increasing. 

The number of organic pollutants whose adsorption on microplastics can be analysed is 

very large. Therefore, it is very useful to develop efficient mathematical models that are able to 

predict the adsorption of new, untested pollutants as QSA/PR (Quantitative Structure 

Activity/Property Relationship) models. QSA/PR modelling correlates the structural properties of 

molecules with their activity or property. To do this, the data obtained from experimental studies 

or calculations must be consistent, which is difficult to achieve as there are no standardised methods 

for collecting and validating the results. Nevertheless, some attempts have been made. The most 

common models use the linear free energy relationship (LFER) or the linear solvation energy 

relationship (LSER) to predict the equilibrium distribution coefficient (log 𝐾d) for the adsorption 

of pollutants on MP.[82,143–146] Other adsorption-related parameters can also be modelled, such as 

the research by Zhang et al.[147] who successfully developed models to predict the maximum 

adsorption capacity and adsorption affinity of organic compounds on PE, PET, PS and PVC MP. 

In order to develop further models that can predict the adsorption of a variety of organic pollutants 

and incorporate the effects of the types of MP and environmental effect, much more experimental 

data is needed, which once again underlines the importance of developing standardised methods. 

On the other hand, the tools of computational chemistry can be used to collect data on molecular 

interactions that would be difficult and time-consuming to obtain through experimental research 

alone. With this in mind, some QSA/PR models have been successfully developed that correlate 

the calculated interaction energies between compounds with the structural properties.[148,149] 

Further details on the theoretical background of computational chemistry tools and modelling 

methods are described in section 2.3.  
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2.3.  Theoretical background  

2.3.1.  Basics of quantum chemistry 

The fundamental postulate of quantum mechanics states that every chemical system is completely 

represented by its wave function Ψ(𝑟, 𝑡) and that observables are represented by appropriate 

operators that return the value of a corresponding observable by acting on a system wave 

function.[150] The wave function Ψ(𝑟, 𝑡) is the solution of the time-dependent Schrödinger equation: 

 ĤΨ(𝑟, 𝑡) = 𝑖ℏ
𝜕Ψ(𝑟, 𝑡)

𝜕𝑡
 (2.6) 

where Ĥ is the Hamiltonian operator and ℏ is Planck’s constant. The product of a wave function 

with its complex conjugate |Ψ(𝑟, 𝑡)|2 is the probability density for finding the particle at position 

𝑟, at time 𝑡. For a system with constant potential energy, the wave function can be separated to 

position dependent variable Ψ(𝑟), and time-dependent variable 𝜑(𝑡). In this case, the probability 

density for finding a particle at position 𝑟 does not depend on time (|Ψ(𝑟, 𝑡)|2 = |Ψ(𝑟)|2), nor 

does any other expected value of observables. Therefore, the system is in its stationary state.[151]  

2.3.1.1.  Time independent Schrödinger equation 

Quantum chemistry methods use the principles and equations of quantum mechanics to find an 

approximate solution of non-relativistic, time-independent Schrödinger equation (stationary state):  

 ĤΨ(𝑟) = 𝐸Ψ(𝑟) (2.7) 

where Ĥ is Hamiltonian operator for a molecular system in the absence of magnetic or electric 

field, Ψ(𝑟) is a time-independent wave function and 𝐸 is the total energy of the system.[152] The 

Hamiltonian is the operator of total energy, which typically considers five contributions:  

 Ĥ = T̂e + T̂n + V̂ne + V̂ee + V̂nn (2.8) 

the kinetic energy of electrons (T̂e), the kinetic energy of nuclei (T̂n), the potential energy of 

interactions between nuclei and electrons (V̂ne), the potential energy of electron-electron 

repulsion (V̂ee) and nuclei-nuclei repulsion (V̂nn). The upper equation is expressed as:  

 Ĥ = − ∑
ℏ2

2𝑚e
∇𝑖

2 − ∑
ℏ2

2𝑚k
∇𝑘

2

𝑘

− ∑ ∑
𝑒2𝑍𝑘

𝑟𝑖𝑘
+ ∑

𝑒2

𝑟𝑖𝑗
𝑖<𝑗𝑘𝑖𝑖

∑
𝑒2𝑍𝑘𝑍𝑙

𝑟𝑘𝑙
 

𝑘<𝑙

 
(2.9) 
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where 𝑖 and 𝑗 run over electrons, 𝑘 and 𝑙 over all nuclei, 𝑚e is the mass of electron, 𝑚k is the mass 

of nuclei, 𝑍 is the atomic number, 𝑟 is the distance between two particles, ℏ is Planck’s constant, 

and ∇2 is the Laplacian.  

 The repulsion and attraction terms in Hamiltonian suggest that the particles do not move 

independently, i.e. their motion is correlated. For that reason, it is not possible to separate the 

variables and derive an analytical solution of Schrödinger equation for a system that contains more 

than one particle. Therefore, the Schrödinger equation of a many-body system is solved using 

approximative and numerical methods.  

2.3.1.2.  Born-Oppenheimer Approximation 

The most important approximation in quantum mechanics is Born-Oppenheimer approximation 

that separates the motion of nuclei from the motion of electrons. It relies on a fact that one proton 

weight about 1800 times more than an electron, so the kinetic energy of a nuclei is negligible 

compared to the kinetic energy of an electron.[152] Therefore, in scope of the Born-Oppenheimer 

approximation, the position of nuclei is fixed, and nuclei-nuclei repulsion term becomes a simple 

constant for a given geometry. The electronic time-independent Schrödinger equation than can be 

written as:  

 (Ĥel + V̂nn)Ψel(q𝑖; q𝑘) = 𝐸elΨel(q𝑖; q𝑘) (2.10) 

where q𝑖 are electronic coordinates, q𝑘 are nuclear coordinates parameters, 𝐸el is electronic energy, 

and Ĥel is the sum of the electrons’ kinetic energies and potential energies of nuclei-electron 

attractions and electron-electron repulsions, as: 

 Ĥel = T̂e + V̂ne + V̂ee (2.11) 

The Born-Oppenheimer approximation is one of the fundamental approximations in computational 

chemistry that significantly simplifies the Schrödinger equation and introduces the concept of 

potential energy surface (PES).  

PES is a surface determined by electronic energy (𝐸el) over all possible nuclear coordinates 

(geometries). In computational chemistry, one of the main goals is to determine stable geometries 

of a system and transitions states that connect them. This can be done by analysis of PES and its 

stationary points, i.e. minima and maxima on potential energy surface.[153] Stable geometries are 

represented by minima of energy. Small changes in geometry of minima will increase potential 

energy of a system. The lowest energy path connecting two local minima is called reaction 

coordinate and the maximum on reaction coordinate is a transition state between these two minima.  
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2.3.1.3.  Variational principle  

The Born-Oppenheimer approximation allows us to analytically solve Schrödinger equation for 

systems containing one electron, such as hydrogen atom and helium cation. For system with more 

than one electron, the approximative numerical methods are needed. One of those methods is 

variational method based on the variational principle. The variational principle states that the 

energy calculated as the expectation value of the Hamiltonian operator (Ĥ) from any trial 

wavefunction (ΨTrial) must be greater than or equal to the true ground-state energy (𝐸0), i.e.:  

 
∫ ΨTrial

∗ ĤΨTrial

∫ ΨTrial
∗ ΨTrial

≥ 𝐸0 (2.12) 

This principle enables comparison of trial wave functions by their associated energies following 

the rule: the lower the better.[152]  

2.3.1.4.  Basis set  

The variational principle allows the use of any function that seems reasonable as trial wave 

function. Generally, the trial wave function is presented as linear combination of arbitrary 

functions:  

 ΨTrial = ∑ 𝑐𝑖𝜙𝑖

𝑖

 
(2.13) 

where 𝜙𝑖  are arbitrary functions, and 𝑐𝑖 are coefficients chosen in a way to minimise the energy. 

The set of mathematical functions 𝜙𝑖 used to construct the wave function is called basis set. In 

theory, the best wave function in a limit of chosen method is achieved by using an infinite basis 

set. However, in practice, this is impossible as computational cost increases with the number of 

basis functions used. In the light of computational efficiency, it is desirable to have a smaller 

number of basis set functions that are chemically reasonable, i.e. have a small amplitude in a region 

where the probability density is low, and larger in a region where the probability density is high, 

and that it can calculate the wave function in a computationally efficient way.[154] 

Slater type orbitals (STOs) are very attractive type of basis functions as they closely 

resemble hydrogenic atomic orbitals whose radial wave function has a cusp at the nucleus and 

exponential decay at larger distances from nucleus. Unfortunately, their use is quite limited as they 

require the use of numerical integration which becomes quite compilated for a system of any 

significant size. Gaussian type orbitals (GTOs) are another type of basis functions that can 

analytically solve high order integrals and therefore are more computationally efficient than STOs. 
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However, they do not have a cusp at 𝑟=0 and they decay too quickly at larger distances from 

nucleus. To overcome these limitations of both STOs and GTOs, most of the basis set functions 

are built as a linear combination of GTOs fit to reproduce the shape of STOs. A basis function 

defined as linear combination of GTOs is called contracted GTO (cGTO) and each GTO is called 

primitive function.[155]  

The size of a basis set is a very important feature. Basis set with smaller number of basis 

function are computationally more efficient, but the resulting wave function is less accurate 

compared to the wave function produced with more basis functions. The minimal basis, also called 

single-ζ basis set defines one basis function for each orbital. The basis set with two functionals for 

each orbital is called double- ζ basis set, with three functions triple- ζ, and so on. One way of adding 

basis functions is by decontracting basis set, that is by constructing more basis functions using the 

same number of primitive GTOs. In general, valence orbitals are significantly affected by chemical 

bonding as opposed to core orbitals. For that reason, it is more important to have more flexibility 

in valence basis functions than core functions. This led to the development of split-valence basis 

sets in which valence orbitals are represented by more basis functions while core orbitals are 

represented only by a single basis function. 

Basis set that contains only functions cantered on the atoms lacks the flexibility to 

efficiently describe the molecular orbitals of a system with multiple nuclei. This flexibility is 

almost always increased by adding polarization function, that is by adding function that correspond 

to the orbitals with one quantum number higher angular momentum than the valance orbital. Thus, 

p-functions are added to polarize s-functions for hydrogen and helium, d-functions to polarize p-

functions, and f-functions to polarize d-functions in heavy atoms. Lossely bound electrons that are 

found in anions and excited states, are on the average at larger distance from nuclei than core or 

bonding electrons. In that case diffuse functions are added to basis set to increase the electron 

density at larger distance from nuclei. Diffuse functions are Gaussian functions with smaller 𝛼 

value which causes slower descent of 𝑒−𝛼𝑟2
with the distance 𝑟 from the nuclei.[156]  

2.3.1.5.  Hartree-Fock method 

The Schrödinger equation for a system with more than one electron cannot be solved analytically 

because of the electron-electron repulsion term(s) are unknown. One way to approximate these 

terms is to separate the motion of electrons and solve a set of one electron wave function where 

electron move in an average potential from all the other electrons.[152] This approximation is a basis 
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of Hartree-Fock (HF) method that is the simplest ab initio method that laid foundations for all 

others, more advanced methods. In HF method, the wave function on 𝑁 electrons is represented as 

one Slater determinant (SD):  

 ΦSD =
1

√𝑁!
|

𝜒1(1) 𝜒2(1) … 𝜒𝑁(1)

𝜒1(2) 𝜒2(2) … 𝜒𝑁(2)
⋮ ⋮ ⋱ …

𝜒1(𝑁) 𝜒2(𝑁) … 𝜒𝑁(𝑁)

| (2.14) 

where 𝜒 is a spin-orbital and 1/√𝑁! is a normalization factor. Spin-orbital is a product of spatial 

orbital and electron spin eigenfunction chosen to be orthonormal for computational convenience:  

 ⟨𝜒𝑖|𝜒𝑗⟩ = 𝛿𝑖𝑗 (2.15) 

Each row in SD represents one electron, while each column represents a unique spin-orbital where 

the electron could be found. In SD there are no more than one electron in each spin-orbital which 

follows the Pauli exclusion principle that forbids having two electrons in a system with all the same 

quantum numbers. SD also ensures the wave function is antisymmetric as the switching of two 

rows or columns will change the sign of the determinant. The one electron Hamiltonian in HF 

method, called Fock operator is defined as: 

 𝑓𝑖 = −
1

2
∇𝑖

2 − ∑
𝑍𝑘

𝑟𝑖𝑘
+ 𝑉𝑖

HF{𝑗}

nuclei

𝑘

 (2.16) 

where the first two terms are kinetic energy of the electron and potential energy of the electron-

nucleus attraction. 𝑉𝑖
HF{𝑗} is the Hartree-Fock potential that is the average repulsive potential that 

one electron feels from all the other electrons occupying orbitals {j}. 𝑉𝑖
HF{𝑗} can be computed as:  

 𝑉𝑖
HF{𝑗} = ∑

∫ 𝜌𝑗

𝑟𝑖𝑗
𝑑𝑟

𝑗≠𝑖

 
(2.17) 

where 𝜌𝑗 is the probability density related to electron 𝑗 which is calculated as 𝜌𝑗 = |𝜒𝑖|
2. Therefore, 

to calculate the spin-orbital of electron 𝑗, one must know the probability density of electron 𝑗 that 

is the calculated using that exact spin-orbital. This circular problem is bypassed by iterative self 

consistent field (SCF) method. In SCF, the initial density matrix is guessed and used to solve HF 

equations to derive the new density matrix. The new density matrix is then used for the next 

iteration and so on until the self-consistency is reached, i.e. until the difference between two density 

matrices is less than the set threshold value.  
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 HF derived energy of a system (𝐸HF) is necessarily always larger (less negative) than the 

exact ground state energy (𝐸0) because of the variational principle.[157] The difference between the 

exact energy of the ground state and the energy computed by HF method is called correlation 

energy (𝐸c
HF) and is calculated as:  

 𝐸c
HF = 𝐸0 − 𝐸HF (2.18) 

𝐸c is a negative quantity that is caused by instantaneous repulsion of the electrons which is 

neglected in HF method as it treats repulsion only as average potential field. Although the error of 

HF might seem small, the electron correlation is very important quantity for the exact treatment of 

chemical systems. Considering the helium atom, the correlation energy is about 26 kcal mol–1.[157] 

As the system increase in size, so does the correlation energy. Therefore, new methods are 

developed and continue developing to include the correlation effect and improve the results of HF. 

The methods can be divided to semiempirical methods developed by fitting to empirical data and 

post-HF methods that are purely theoretical. These post-HF methods include configuration 

interaction (CI) methods, Møller-Plesset perturbation (MPn) methods and coupled cluster (CC) 

methods.[157] In theory, ab initio post-HF methods can produce the exact solution if all possible 

excited states are considered with the infinite basis set. In practice this is not possible as the 

calculations become too expensive. Therefore, the post-HF ab initio methods with large basis set 

are usually used only for a small molecular system and the choice of computational method is a 

compromise between the computational efficiency and method accuracy.  
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2.3.2.  Density Functional Theory (DFT) 

The 𝑁-electron wave function depends on 4𝑁 coordinates (3𝑁 spatial and 1𝑁 spin coordinates). 

Thus, the methods based on wave function can become computationally very expensive for a 

system containing many atoms and electrons, which are of common interest in biological, chemical, 

and physical systems.[158] This complexity of a wave function was a motivation for the development 

of density functional theory (DFT) that uses electron density (𝜌(𝑟)), i.e. probability density, as a 

variable to determine many-electron system’s properties. Unlike wave function, electron density 

depends only on three spatial coordinates, regardless of the system size. Also, it has a physical 

meaning as it is a quantity that can be experimentally measured (observable). Moreover, electron 

density integrated over all space gives the total number of electrons:  

 ∫ 𝜌(𝑟)𝑑𝑟 = 𝑁 (2.19) 

The local maxima of an electron density correspond to the positions of nuclei as the nuclei as there 

are effectively positive point charges that attract negative electrons. At these positions, the gradient 

of the density is discontinuous which results in cusp. The electron density at these positions can 

also give information about nuclear charges as:  

 
𝜕𝜌̅(𝑟A)

𝜕𝑟A

|
𝑟A=0

= −2𝑍A𝜌(𝑟A) (2.20) 

where 𝜌̅ is a spherically averaged electron density, 𝑍A is nuclear charge of nucleus A, and 𝑟A is the 

radial distance from A.[158]  

 DFT is based on two theorems proved by Hohenberg and Kohn in 1964.[159] The first 

theorem is an existence theorem that states that the energy of the ground electronic state is a unique 

functional of the electron density, i.e., the electron density determines the external potential (to an 

additive constant), which in turn determines the ground state wave function. The second one 

establishes the variational principle, that is the energy of a system calculated using trial electron 

density is higher or equal to the ground state energy of that system. These two theorems lead to a 

conclusion that there is a universal energy functional 𝐸[𝜌(𝑟)] that can be used to obtain the energy 

of a system and, by energy minimisation, the exact ground state energy. The energy functional 

contains three terms and can be expressed as:  

 𝐸[𝜌(r)] = 𝑇[𝜌(r)] + 𝑉ne[𝜌(r)] + 𝑉ee[𝜌(r)] (2.21) 
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where 𝑇 is kinetic energy of electrons, 𝑉ne is potential energy of nuclear-electron attraction and 𝑉ee 

is potential energy of electron-electron repulsion. 𝑇 and 𝑉ee are impossible to calculate due to the 

electron-electron repulsion in the correct Hamiltonian.  

2.3.2.1.  Kohn-Sham model 

In 1965, Kohn and Sham (KS) proposed a key model that allowed the practical use of DFT in 

computational chemistry. They introduced a fictious system of non-interacting electrons that have, 

in their ground state, the same electron density as some real system where electrons do interact.[160] 

As electron density determines the position of nuclei, the geometry of fictious and real system is 

the same. The energy of KS system is formulated as:  

 𝐸[𝜌(r)] = 𝑇ni[𝜌(r)] + 𝑉ne[𝜌(r)] + 𝑉ee[𝜌(r)] + 𝐸xc[𝜌(r)] (2.22) 

where 𝑇ni is kinetic energy of the non-interaction electrons, 𝑉ne is potential energy of nuclear-

electron attraction, 𝑉ee is classical electron-electron repulsion, and finally 𝐸xc is exchange 

correlation term that holds all the corrections to the potential energy from the non-classical 

electron-electron repulsion and correction to kinetic energy that arise from the electron-electron 

interactions.[161] The ground-state density can be calculated as:  

 𝜌(𝑟) = ∑|𝜒𝑖(𝑟)|2 

𝑁

𝑖

 (2.23) 

where 𝑁 is the number of electrons and 𝜒𝑖 is the Kohn-Sham orbital of 𝑖-th electron represented as 

linear combination of basis set functions. The 𝜒𝑖 orbitals are solution on 𝑁 single particle equations:  

 ℎ𝑖
KS𝜒𝑖 = 𝜀𝑖𝜒𝑖 (2.24) 

where ℎ𝑖
KS is one electron Kohn-Sham operator defined as:  

 ℎ𝑖
KS = −

1

2
∇𝑖

2 − ∑
𝑍𝑘

|𝑟𝑖 − 𝑟𝑘|
+ ∫

𝜌(𝑟′)

|𝑟𝑖 − 𝑟′|
𝑑𝑟′ + 𝑉xc 

nuclei

𝑘

 (2.25) 

 𝑉xc(𝑟) =
𝛿𝐸xc

𝛿𝜌
 (2.26) 

where 𝑖 runs over all electrons and 𝑘 over all nuclei. The KS orbitals form the Slater-determinant 

that is an eigenfunction of the sum of the Kohn-Sham operators:  

 ∑ ℎ𝑖
KS|𝜒1𝜒2 … 𝜒𝑁⟩ = ∑ 𝜀𝑖|𝜒1𝜒2 … 𝜒𝑁⟩

𝑁

𝑖

𝑁

𝑖

 (2.27) 
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The form of KS equations is similar to HF equations. The solution of ground-state density 

is found using an iterative SCF procedure and minimizing the system energy.[161] The key 

difference between HF and DFT is that the DFT is exact provided we know the exact functionals. 

In practice, however, the exchange-correlation functional is unknown thus different 

approximations are used to find a solution for ground-state density. It is worth noting that the 

computer cost of DFT methods formally scales as 𝑁3 where 𝑁 is the number of basis functions 

used, while HF method scales as 𝑁4. The convergence respect to basis set tends to be more rapid 

for DFT methods compared to methods based on molecular orbitals. DFT methods generally 

preform much better than HF and are less expensive than post-HF methods.[161]  

2.3.2.2.  Exchange-correlation functionals 

The quality of the DFT results depends on the quality of approximation used for exchange-

correlation functional. While as in methods based on wave functions, there is a clear path to the 

exact solution, in DFT there is no systematic way of improving the results. Therefore, many 

different functionals have been proposed in literature and the choice to use one of them depend 

mainly on the chemical system that needs to be solved.[161] The functionals are generally expressed 

as:  

 𝐸xc[𝜌(𝑟)] = ∫ 𝜌(𝑟)𝜀xc[𝜌(𝑟)]𝑑𝑟 (2.28) 

where 𝜀xc is the energy density per particle density. This term is always treated as a sum of 

individual exchange and correlation contributions: 

 𝜀xc = 𝜀x + 𝜀c (2.29) 

The functionals are generally divided according to their complexity to several categories.  

 Local density approximation (LDA) functionals use the simplest approximations in which 

the energy density 𝜀xc on position 𝑟 depends solely on the value of density 𝜌 at the same position. 

In practice, this is true only for functional derived from the analysis of the uniform electron gas. 

The exchange for the uniform electrons gas is known to be:[162] 

 𝐸x
LDA[𝜌] = −

3

4
(

3

𝜋
)

1
3

∫ 𝜌
4
3𝑑𝑟 (2.30) 

It is not possible to analytically derive the correlation functional for uniform gas. Instead, the results 

of Monte Carlo simulations that computed the uniform gas to high accuracy were used to determine 
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the correlation energy. Local spin density approximation (LSDA) additionally includes the local 

spin-polarization.  

 Generalized gradient approximation (GGA) functionals consider electron density and its 

gradient at position 𝑟. Most of the GGA functionals are constructed by adding correction to LDA 

functional in a way:  

 𝜀xc
GGA[𝜌(𝑟)] = 𝜀xc

LDA[𝜌(𝑟)] + Δ𝜀xc
GGA [

|∇𝜌(𝑟)|

𝜌
4
3(𝑟)

] (2.31) 

GGA functionals are developed both as non-empirical and empirical functionals. Parameter free 

functionals use only theoretical conditions to determine new parameters in a general form. While 

as empirical functional are derived by fitting the parameters to experimental data or accurately 

calculated atomic and molecular properties. The most commonly used GGA functionals are 

Perdew, Burke and Ernzerhof (PBE),[163] and Becke, Lee, Parr and Yang (BLYP).[164]  

 Next in line are meta-GGA functionals that consider second order gradients of the density, 

and the Kohn-Sham kinetic energy density defined as:  

 𝜏(𝑟) = ∑
1

2
|∇χ𝑖(𝑟)|2

occupied

𝑖

 (2.32) 

meta-GGA are typically more accurate than GGA with a comparable cost. The most used meta-

GGA functional is TPSS constructed by Tao, Perdew and co-workers.[165]  

 All of the above functionals are referred to as “pure functional” as they are derived only 

from DFT theory. Hybrid functionals, on the other hand, mix a portion of HF exact exchange with 

GGA or LDA functionals. This allows the inclusion of the effects of static correlation which 

consequently leads to more accurate results. The parameters for hybrid functionals are determined 

by fitting to a set of molecular data. The most favoured functional of this kind is B3LYP as it 

showed a reasonably good performance over a wide range of chemical systems. B3LYP is defined 

as:  

 𝐸xc
B3LYP = (1 − 𝑎)𝐸x

LSDA + 𝑎𝐸x
HF + 𝑏Δ𝐸x

B + (1 − 𝑐)𝐸c
LSDA + 𝑐𝐸c

LYP (2.33) 

where Δ𝐸x
B are GGA corrections to the LDA exchange energy and 𝑎, 𝑏, 𝑐 are parameters that in this 

method equal 0.20, 0.72, and 0.81 respectively.[166] Hybrid functionals are more costly than pure 

functionals due to the exact HF exchange that depends not only on density but also on density 

matrix.[167] 
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 Double hybrid functionals include virtual orbitals to treat non-local correlation energy by 

second order Møller-Plesset perturbation theory (MP2).[168] Double-hybrid DFT is one of the most 

accurate quantum chemical method but are also computationally very expensive.[169]  

 

Figure 2.7. Jacob’s ladder of DFT functionals. 

 

2.3.2.3.  Dispersion energy correction 

DFT methods generally lack the ability to account for inter or intramolecular dispersion (London) 

forces.[162] Dispersion forces are attractive forces that derive from electron correlation at long 

distances. Local functionals are not able to properly describe dispersion as they rely entirely on 

local density, and adding non-local HF exchange does not help as it cannot account for electron 

correlation. Consequently, DFT methods are often inaccurate for system where these interactions 

play a significant role, as for an example, biological systems, molecular crystals, and adsorption 

on surface. New methods and functionals able to capture a portion of dispersion interactions and 

improve results are developed.[170] However, the methods based entirely on first principle are 

computationally too demanding. On the other hand, semiempirical dispersion correction methods, 

proposed by Grimme et al. and called DFT-D, are able to largely improve the results where 

dispersion interactions play a significant roles without adding a notable computational cost.[171] In 

DFT-D, empirical correction is added a posteriori to the energy calculated by KS DFT: 
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 𝐸DFT-D = 𝐸DFT + 𝐸disp (2.34) 

where 𝐸disp is an empirical dispersion correction given as:  

 𝐸disp = −𝑠6 ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6 𝑓dmp(𝑅𝑖𝑗)

𝑁

𝑗>𝑖

 (2.35) 

𝑁 is the number of atoms in the molecule, 𝑠6 is a global scaling factor that depends on the 

functional, 𝐶6
𝑖𝑗

 are dispersion coefficients for atom pair 𝑖𝑗, 𝑅𝑖𝑗 is a distance between atom pair 𝑖𝑗, 

and 𝑓dmp is a damping function that tends to 1 at large interatomic distance, and to 0 at small 

distances.[172] The difference between DFT-D methods generally differ by the approach used to 

calculate dispersion coefficient.[173,174]  

 

2.3.3.  Quantum chemistry calculations 

The simplest kind of quantum chemistry calculation is a single point (SP) energy calculation. SP 

calculates the wave function of a chemical system at a specified geometric structure. This kind of 

calculation are often performed using more accurate and costly methods on systems whose 

geometries were previously optimized at lower level of theory.  

 Geometry optimization calculation locates the stationary point on potential energy surface, 

that is, the point where gradient of the energy is zero. The geometry optimisation starts with the 

input structure and continues along the potential energy surface. At each point, the energy and the 

gradient of the energy are calculated, i.e. the forces that determine the direction and slope on the 

PES in which the energy decreases. The optimisation algorithm then determines how to change the 

system coordinates in order to reduce the energy of the system. Most optimisation algorithms today 

also calculate the second derivative of the energy, also called the Hessian, which gives the 

curvature of the surface at that point to helps determine the next step. The process of changing the 

geometry and calculating the energy and forces is repeated until convergence, that is, until the 

forces are close to zero and the changes in geometry and energy are below a specified threshold. 

Geometry optimisation is generally used to find stable geometries, that is, minima on the PES. It 

should be noted that the optimisation algorithm always leads towards lower energies, so it finds a 

local minimum on the PES that is not necessarily the most stable structure, i.e. a global minimum. 

To find another local or global minimum, a new input geometry is needed. 
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 Frequency calculations determine normal-mode vibrational frequencies that can be used to 

predict infrared spectrum and calculate zero-point energy and other thermodynamical properties of 

interest, such as enthalpy and entropy of a system at given temperature. Frequency analysis often 

follows geometry optimization to determine the nature of stationary point as it calculates the 

Hessian matrix that describes the curvature of PES. If an element in Hessian matrix is negative, the 

corresponding frequency is called imaginary frequency. Stationary point that has no imaginary 

frequencies is a true minimum on PES. If there is only one imaginary frequency, the stationary 

point is a saddle point that might correspond to transition state, and if it has 𝑛 imaginary frequencies 

it is a saddle point od 𝑛𝑡ℎ order.  

 

Figure 2.8. Flow diagram of general single point calculation and geometry optimization process.  

 

2.3.3.1.  Including the effect of solvent 

The calculations in gas phase are much simpler than the ones in solvent. However, they are often 

inadequate to describe a molecule in solution as the solvent can affect its energy and geometry as 

well as other properties. The molecules of solvent can also directly affect the adsorption 

mechanism.[175] As experimental studies suggest, the adsorption of organic pollutants to 

hydrophobic microplastic is often largely controlled by hydrophobic interaction.[68,69] These types 

of interactions are directly related to the presence of water molecules in the system and can be 
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attributed to their tendency to interact with other water molecules rather than adsorbate and 

adsorbent molecules.[176] Thus, the calculations in gas phase cannot account for the hydrophobic 

interactions. Other types of interactions are also affected by the presence of water or some other 

solvent in a studied system. For example, electrostatic interactions are much less important for the 

system placed in solvent with high dielectric constant, such as water, than for the system in a gas 

phase.  

Generally, the effect of solvent is included in calculations by two different approaches: 

explicit (atomistic), or implicit (continuum) approach. In atomistic approach, the molecules of 

solvent are added around the solute to simulate the solvation shells, while in continuum approach, 

the solvent is treated as a continuum dielectric featuring specific dielectric properties. The clear 

advantage of atomistic approach over continuum, is the ability to describe a specific interaction 

between a solute and solvent molecule, such as hydrogen bonds.[177] However, the addition of 

solvent molecules is computationally very demanding. Nowadays, QM/MM approaches are 

developed to include a larger quantity of explicit solvent molecules whereas a small number of 

solvent molecules closest to the solute are treated at quantum mechanics (QM) level of theory, 

while the bulk solvent is treated by molecular mechanics (MM) classical force field.  

Implicit treatment of solvent is included in self-consistent reaction field (SCRF) method. 

In this method, the solvent is described as a continuum of uniform dielectric constant 𝜀𝑟. The solute 

is placed in a molecular-shaped cavity within the solvent. Then, the solute is able to polarize the 

dielectric which creates an apparent charge density on the surface of the cavity that back-polarizes 

the solute.[177] There are various SCRF methods available that differ by the way they define the 

cavity and dielectric constant.[178] Some of the most commonly used are PCM,[179] CPCPM,[180] 

COSMO[181] and SMD.[182] The combination of implicit and explicit approach is also often used in 

a way that few solvent molecules are treated explicitly while the rest of the solvent is treated as 

continuum. These combined models are referred to as cluster or supermolecule models.  

2.3.3.2.  Basis set superposition error (BSSE) 

The interaction energy of two monomers 𝐴 and 𝐵 (𝐸int(AB)) is calculated as the difference between 

the energy of a dimer (𝐸(AB)) and energies of separated monomers (𝐸(A) and 𝐸(B)): 

 𝐸int(AB) = 𝐸(AB) − 𝐸(A) − 𝐸(B) (2.36) 

One of the well-known problems that occur when calculating energy of a dimer using DFT methods 

is basis set superposition error (BSSE). In a calculation of a dimer, an individual monomer can 
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utilize some of the basis functions of other monomer and vice versa, which stabilizes the dimer and 

lowers its energy. This stabilization of a dimer leads to an artificial overestimation of interaction 

energy between monomers which is especially problematic in calculations of weakly bound 

systems.[183] BSSE is a consequence of using a finite basis set to calculate energies of monomers 

and dimer. Thus, it can be reduced by using more basis functions, and completely eliminated by 

using infinite basis set, which is practically impossible due to the increasing cost of calculation.  

A very popular method to deal with the BSSE is counterpoise-correction (CP) method 

proposed by Boys and Bernardi.[183] In CP method, the energy of a monomer is calculated using 

the basis set of a whole dimer. That is, the energy of monomer A is calculated in a dimer basis set 

in a way that the electrons and nuclear charges of monomer B are neglected and vice versa. The 

atoms without nuclear charge and electrons are usually called ghost atoms, and their basis function 

are called ghost functions.[184] The interaction energy can then be rewritten as:  

 𝐸int
CP(AB) = 𝐸AB(AB) − 𝐸AB(A) − 𝐸AB(B) (2.37) 

where subscript AB means that the whole dimer basis set is used. The stabilization of one monomer 

by extra basis functions of another monomer is estimated as:  

 𝐸BSSE(A) = 𝐸AB(A) − 𝐸A(A) (2.38) 

 𝐸BSSE(B) = 𝐸AB(B) − 𝐸B(B) (2.39) 

and the counterpoise corrected energy for a dimer is expressed as:  

 𝐸AB
CP(AB) = 𝐸AB(AB) − 𝐸BSSE(A) − 𝐸BSSE(B) (2.40) 

For interaction calculations in continuum solvent, there is still no widely used method to deal with 

BSSE. In some studies, the energies of dimer and monomers in continuum solvent are calculated 

using their own basis set, while the correction to the monomer energies due to BSSE are calculated 

in gas phase.[185] In other studies, the interaction is calculated using a standard CP method, but the 

monomers are calculated in a dimeric cavities.[186,187] 
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2.3.4.  Molecular dynamic simulations 

The quantum chemical methods described so far provide a static image of the molecular system in 

which the positions of the nuclei are fixed. Molecular dynamics (MD) simulations, on the other 

hand, enable the movement of atoms and time-evolution of a chemical system. This provides 

insights into various dynamic processes such as conformational changes, solvation processes, 

ligand binding and adsorption or absorption mechanisms as well as the calculation of the 

equilibrium and transport properties of a system.[188–190] 

In MD, each atom is characterised by the specific position and momentum coordinates. The 

system of 𝑁 atoms therefore defines a 6𝑁–dimensional space called phase space.[191] The time 

evolution of a system (trajectory) is calculated according to the laws of classical mechanics by 

solving Newton’s equations of motion: 

 𝑓𝑖 = 𝑚𝑖

𝜕2𝑞𝑖

𝜕𝑡2
= 𝑚𝑖

𝜕𝑣𝑖

𝜕𝑡
= −

𝜕𝑈(𝑞)

𝜕𝑞𝑖
 (2.41) 

where 𝑓𝑖 is the force acting on atom 𝑖, 𝑚𝑖 is the mass of atom 𝑖, 𝑞𝑖 is a 3D vector representing the 

position of atom 𝑖 in space, 𝑡 is the time, 𝑣𝑖 is the velocity and 𝑈(𝑞) is the potential energy defined 

by the classical force field. In MD, the properties of a system are calculated by time averaging a 

simulation that is long enough to achieve convergence. Convergence is achieved when enough 

phase points are sampled and when a further increase in time does not change the results.[192] MD 

assumes the validity of the ergodic hypothesis, which states that all accessible microstates are 

equally likely over a long period of time. In other words, the average value of a system over all 

possible quantum states is equal to its time average.[193] MD methods can be divided into classical 

and ab initio (AIMD) methods. In classical MD, the interatomic forces are calculated from a 

predefined force field, whereas in AIMD the forces are obtained from QM calculations. Although 

much higher accuracy can be achieved with AIMD, the computational cost of such calculations is 

considerably higher, so that only small systems can be treated.[194] Therefore, it is only used when 

high-precision simulations are required or to treat effects that can hardly be described with the 

force field method, such as bond formation and breakage or polarisation and charge transfer effects. 

2.3.4.1.  Force field 

A classical mechanic force field (FF) is a set of equations and associated parameters chosen to 

model the potential energy of a system from which the interatomic forces are calculated. The force 

field methods are based on the assumption that the potential energy can be written as the sum of 
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different potentials with a simple physical interpretation.[195] In most FFs, the total potential energy 

𝑈FF is composed as follows:  

 𝑈FF(𝑞) = 𝑈bond(𝑑) + 𝑈angle(𝜃) + 𝑈dihedral(𝜙) + 𝑈improper(𝜓) + 𝑈ele(𝑟) + 𝑈vdW(𝑟) (2.42) 

where 𝑈bond, 𝑈angle, 𝑈dihedral and 𝑈improper are bonded terms that refer to the stretching and 

compressing of bonds, the bending of angles, torsion (proper dihedrals) and out-of-plane bending 

(improper dihedrals), respectively. 𝑈ele and 𝑈vdW are nonbonded terms related to electrostatic and 

dispersion (van der Waals) interactions.  

 

Figure 2.9. Graphic representation of the main terms defining the potential energy in classical force field, 

including potential energy of bond stretching (𝑈bond(𝑑)), bond-angle bending (𝑈angle(𝜃)), dihedral-angle 

torsion (𝑈dihedral(𝜙)), improper dihedral-angle bending (𝑈improper(𝜓)), and electrostatic (𝑈ele(𝑟)) and van 

der Waals interactions (𝑈vdW(𝑟)).  

 

The bond stretching term can be defined by harmonic potential as following:  

 𝑈bond(𝑑) =  ∑
1

2
𝑘𝑑,𝑖(𝑑𝑖 − 𝑑𝑖0)

𝑖

 
(2.43) 

where 𝑘𝑑,𝑖 is the force constant, 𝑑𝑖 is the bond length, and 𝑑𝑖0 is the reference bond length for the 

bond 𝑖. This term is also often defined by the Morse potential as follows:  

 𝑈bond(𝑑) =  ∑ 𝐷𝑒,𝑖(1 − 𝑒−𝑎𝑖(𝑑𝑖−𝑑𝑖0))
2

𝑖

 
(2.44) 

where 𝐷𝑒,𝑖 is the depth of the energy minimum and 𝑎𝑖 is related to the force constant. The potential 

energy of angle bending is often defined as follows:  
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 𝑈angle(𝜃) = ∑
1

2
𝑘𝜃,𝑖(𝜃𝑖 − 𝜃𝑖0)2

𝑖

 
(2.45) 

where 𝑘𝜃,𝑖 is the bending force constant, and 𝜃𝑖 and 𝜃𝑖0 are the bond angle and the reference bond 

angle respectively for angle 𝑖. The accuracy of the defined bond stretching and angle bending 

potentials is often improved by including additional terms in the Taylor expansion. The proper 

dihedral potential energy can be expressed as follows:  

 𝑈dihedral(𝜙) = ∑ 𝑘𝜙,𝑖(1 + cos(𝑛𝑖𝜙𝑖 − 𝜙𝑖0))

𝑖

 
(2.46) 

where 𝑘𝜙,𝑖 is related to the height of the potential energy barrier, 𝜙𝑖 is the torsion angle, 𝜙𝑖0 is the 

torsion angle that determines the position of a minimum, and 𝑛𝑖 is the number of minima. The 

torsional energy can also be calculated as follows: 

 𝑈dihedral(𝜙) = ∑ ∑ 𝐶𝑛,𝑖(cos(𝜙𝑖))𝑛

𝑁

𝑛=0𝑖

 (2.47) 

where 𝐶𝑛,𝑖 is a constant and n is a number of terms, normally between 4 and 6. Improper dihedrals 

potential is intended to preserve the planarity or chirality of particular groups. It provides a potential 

penalty when atoms in a planar molecule move out of plane or when chiral molecules turn into 

their mirror image. This potential energy is calculated in the same way as the potential energy for 

the proper dihedral. The non-bonded potential energy terms are calculated for atoms separated by 

three or more bonds and for atoms belonging to different molecules. The simplest form for 

calculating the non-bonded van der Waals potential energy is the Lennard-Jones 12–6 potential, 

which is expressed as follows: 

 𝑈vdW(𝑟) = ∑ 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] 

𝑖,𝑗

 (2.48) 

where 𝜀𝑖𝑗 and 𝜎𝑖𝑗 are constants, and 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗. The electrostatic 

interaction between two atoms is commonly represented as the Coulomb interaction of two point 

charges:  

 𝑈ele(𝑟) = ∑
𝑞𝑖𝑞𝑗

4𝜋𝜖0𝑟𝑖𝑗
𝑖,𝑗

 
(2.49) 

where 𝑞𝑖 and 𝑞𝑗 are the partial charges of atoms 𝑖 and 𝑗, 𝜖0 is the dielectric constant and 𝑟𝑖𝑗 is the 

distance between atoms 𝑖 and 𝑗. Different force fields may use different equations to calculate the 
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potential energy terms and different parameters obtained by fitting to the experimental data or by 

QM calculations of smaller set of molecules.  The accuracy of classical MD simulations largely 

depend on the FF used. The most widely used forcefields today are the ones belonging to AMBER, 

CHARM, GROMOS and OPLS groups. These FFs are still actively developed, tested and 

improved, and, by now, provide parameters for a very large subset of molecules.[196] Although very 

similar in their functional form, these FFs differ by the parametrization strategies. Therefore, it's 

important to use only one force field throughout the MD simulation and ensure that the same 

settings used during parameterization are applied.[197] 

For the simulation of systems in a water environment, it is essential to use explicit water 

molecules to account for the specific water-solute interactions. Since the number of water 

molecules surrounding the system is generally very high, simplified water models are used to 

reduce the computational cost of a simulation. In these models, bond lengths and bond angles are 

fixed, interatomic forces are represented by the Lennard-Jones potential and a water dipole moment 

is represented by two or more point charges. The most commonly used simplified water models in 

MD are SPC/E (extended simple point charge) and TIPnP (transferable intermolecular potential). 

SPC/E[198] and TIP3P[199] are three-sided models in which three point charges are centred on each 

atom, but they differ in parameters.[200] TIP4P[199] and TIP5P[201] are also often used models from 

the same family as TIP3P, but with four and five point charges respectively. These models are 

more complex and therefore increase computational cost, but provide a more accurate description 

of water.[202,203] 

The simulation of a system in a bulk phase is usually carried out under periodic boundary 

conditions (PBC). In PBC, the system of interest is placed in a box of finite size surrounded by its 

copies translated in all directions. Thus, if a molecule exits the box on one side, it enters on the 

other side of a box. This approach eliminates the border effect that occurs in a finite system and 

allows the use of a smaller, computationally more efficient system to study the effect in a bulk. 

When using the PBC to simulate the finite system, it is important to choose the size of the box large 

enough so that the molecules do not interact with their own translated copies.[191] For this purpose, 

it is necessary to define a cutoff distance 𝑟cutoff above which all non-bonded (van der Waals and 

electrostatic) interactions can be neglected. Van der Waals interactions are proportional to 𝑟−6, so 

that they quickly decay to zero at large distances. At about 10 to 12 Å, which is a typical 𝑟cutoff, 

van der Waals interactions are close to zero, and truncation of the potential leads to only a small 
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error.[204] The discontinuity of the potential can be adjusted by a switching function that makes the 

potential smoothly go to zero, or by shifting the function by a constant value so that it becomes 

zero at the cutoff distance.[205] The range of the electrostatic interaction is much larger as it decays 

proportionally to 𝑟−1. In general, 𝑟cutoff is set to the same value as for the van der Waals interactions. 

The simplest truncation of the electrostatic potential at this distance leads to a significant error. 

One of the alternative solutions is to use methods based on Edwald summation, which split the 

Coulomb interaction into a short-range term calculated in real space and a long-range term 

calculated in reciprocal space.[197]  The most commonly used method today for considering a long-

range electrostatic interaction is particle-mesh Ewald method (PME).[197] Part of the calculation of 

non-bonding interactions is the evaluation of all interatomic distances which formally scales as 𝑁2, 

where 𝑁 is the number of atoms. An easy way to speed up calculation is to use the so called Verlet 

neighbour list of all atoms for which the interaction should be calculated that is typically updated 

every 10-20 steps of the calculations.[206]  

 

Figure 2.10. Illustration of periodic boundary conditions (PBC).  
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2.3.4.2.  Integration algorithms  

The equations of motion are solved using numerical algorithms. The most commonly used 

algorithms are Verlet-like algorithms due to their simplicity and stability. The Verlet algorithm is 

based on the Taylor expansion of a position coordinate by the time 𝑡.[192] The positions of the atoms 

after the time step Δ𝑡 are calculated only from the forces at time 𝑡:  

 𝑞(𝑡 + Δ𝑡) = 2𝑞(𝑡) − 𝑞(𝑡 − Δ𝑡) +
𝑓(𝑡)

𝑚
Δ𝑡2 (2.50) 

The velocities are not needed for the calculation of the next step, but they can be derived as follows: 

 𝑣(𝑡) =
𝑞(𝑡 + Δ𝑡) − 𝑞(𝑡 − Δ𝑡)

2Δ𝑡
 (2.51) 

The Leap-Frog algorithm is equivalent to Verlet.[192] However, this algorithm uses the forces 𝑓(𝑡) 

to update the velocities for half a time step (𝑡 + 1/2 Δ𝑡) which are then used to update the positions 

at time 𝑡 + Δ𝑡 by the following equations:  

 𝑣 (𝑡 +
1

2
Δ𝑡) = 𝑣 (𝑡 −

1

2
Δ𝑡) +

Δ𝑡

𝑚
𝑓(𝑡) (2.52) 

 𝑞(𝑡 + Δ𝑡) = 𝑞(𝑡) + 𝑣 (𝑡 +
1

2Δ𝑡
) Δ𝑡 (2.53) 

In this way, the velocities and positions are not calculated simultaneously. Consequently, the 

kinetic and potential energy are not calculated simultaneously, so that the total energy of the system 

is not defined. Another popular alternative to the Verlet algorithm, in which positions and velocities 

are calculated simultaneously, is the Velocity-Verlet algorithm. In this algorithm, the new positions 

are calculated from the forces and velocities and the velocities are then updated in a way from the 

forces: 

 𝑞(𝑡 + Δ𝑡) = 𝑞(𝑡) + 𝑣(𝑡)Δ𝑡 +
𝑓(𝑡)

2𝑚
Δ𝑡2 (2.54) 

 𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) +
Δ𝑡

2𝑚
[𝑓(𝑡) + 𝑓(𝑡 + Δ𝑡)] (2.55) 

In the limit of infinitely small time steps, the numerical integration algorithm will generate the 

exact trajectory. However, each time step requires a calculation of the forces. It therefore makes 

sense to use longer time steps in order to capture a trajectory over a longer period of time. In 

practice, the time step should be shorter than the fastest movement in the molecule. In a molecule 

with hydrogen atoms, the vibration of the bond between the hydrogen and the heavy atom is about 

10–14 s. Therefore, the time step should not be greater than 0.1 fs. This means that at least 107 steps 
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are required for 10 ns simulation.[192] Alternative algorithms have been proposed and implemented 

to reduce the computational cost for long simulations by increasing the time step. The higher order 

algorithms incorporate the higher order derivatives of the position to achieve higher accuracy at 

the given time and better predict the position after a longer time step. Other algorithms, such as 

SHAKE, SETTLE and LINCS, use a restricted dynamic approach by freezing the fast bonding 

motions such as those between hydrogen and heavy atoms.[207–210] 

2.3.4.3.  Molecular dynamics ensembles 

A trajectory produced by solving Newton’s equations of motions probes the microcanonical (𝑁𝑉𝐸) 

ensemble in which the number of atoms 𝑁, the volume of a system 𝑉 and the energy 𝐸 are held 

constant. However, MD simulations are usually performed in other types of ensembles, such as 

canonical (𝑁𝑉𝑇) or isothermal-isobaric (𝑁𝑃𝑇) ensembles, in which the temperature 𝑇 and/or the 

pressure 𝑃 are kept constant instead of the total energy of a system 𝐸.[211] Changing the ensemble 

type in MD simulations can be very useful for various reasons. For example, to better match the 

chemical experiments that are typically performed at constant temperature or constant pressure, or 

to study the effects of temperature on the dynamic properties of the system. Switching from 

microcanonical to other types of ensembles is possible using algorithms that modify the equations 

of motion. Algorithms that control the temperature during the simulation are called thermostats and 

those that control the pressure are called barostats. 

The temperature of a system is directly proportional to the kinetic energy. Keeping this 

value constant throughout the simulation would therefore mean that the kinetic energy remains 

constant, which is not desirable. Instead, the thermostat ensures that the average value of a system 

corresponds to the desired value, but allows the temperature and kinetic energy to fluctuate during 

the simulations. This fluctuation can be achieved by coupling a system to a large heat bath with the 

desired temperature 𝑇0.[212] In most cases, simulations are performed in an isothermal-isobaric 𝑁𝑃𝑇 

ensemble controlled by both thermostats and barostats.[213] Similar to thermostats, barostats control 

the average pressure of a system while allowing for pressure fluctuations during the simulation. 

This chapter introduces the most widely used thermostats, including Berensted and canonical 

sampling thermostats based on velocity rescaling, Anderson thermostats based on a stochastic 

approach, and Nosé-Hoover based on extended equations of motion. These are followed by the two 

most widely used barostats, Berensted and Parrinello-Rahman barostat. 
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The easiest way to control the temperature of a system is to rescale the velocity of a system 

using the equation: 

 𝑣new = 𝑣old𝜆 (2.56) 

where 𝑣new is a new velocity of a system, which calculated by rescaling the velocity 𝑣old after each 

time step by the scaling factor 𝜆. In the strong coupling method, the factor 𝜆 is calculated as √𝑇0/𝑇 

where 𝑇 is the current temperature of a system and 𝑇0 desired temperature. In this approach the 

velocities change quite drastically, and the fluctuation of temperature is not allowed. The Berensted 

algorithm, also called the weak coupling algorithm, allows the control of the strength of the 

coupling between a system and a heat bath.[214] In Berendsen thermostat, the rate of temperature 

change is proportional to the difference between the desired temperature 𝑇0 and the actual 

temperature 𝑇:  

 
𝑑𝑇

𝑑𝑡
=

1

τ
(𝑇0 − 𝑇) (2.57) 

where 𝜏 is the coupling time, which determines how tight the bath and a system are coupled and 

consequently determines the time scale for reaching the desired temperature. The scaling factor 𝜆 

is calculated as:  

 𝜆 = √1 −
Δ𝑡

𝜏
(1 −

𝑇0

𝑇
) (2.58) 

When the coupling parameter 𝜏 is high, the coupling is very weak and the scaling factor approaches 

unity, i.e. the microcanonical ensemble. The lower the 𝜏 values, the stronger the coupling and the 

more significant the temperature exchange between the bath and the system. And if the value of 𝜏 

is equal to Δ𝑡, the scaling factor is √𝑇0/𝑇, just like in the simplest velocity rescaling algorithm. 

The Berensted thermostat does not allow the kinetic energy to fluctuate and does not generate a 

proper canonical ensemble. The kinetic energy is not properly redistributed to the system, which 

invalidates the equipartition theorem and leads to an artifact called the flying ice cube effect.[215] 

Considering this fact, the Berensted thermostat should not be used for MD simulations and is 

mostly only discussed for historical reasons, although it can still be used for fast equilibration of a 

system to the desired temperature. 

An alternative algorithm based on velocity rescaling is the canonical sampling through 

velocity rescaling (CSVR) thermostat proposed by Bussi et al.[216] The CSVR thermostat is similar 
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to the Berenested algorithm, but has an additional stochastic term that ensures the correct canonical 

ensemble. The scaling factor 𝜆 in CSVR is calculated as follows:  

 𝜆 = √
𝐾0

𝐾
 (2.59) 

where 𝐾 is the kinetic energy of a system and 𝐾0 is the desired kinetic energy obtained by a 

stochastic method from the probability density function: 

 𝑃̅(𝐾0)𝑑𝐾0 ∝ 𝐾0

𝑁𝑓/(2−1)
𝑒

−
𝐾0

𝑘𝑏𝑇0𝑑𝐾0 (2.60) 

where 𝑁𝑓 is the number of degrees of freedom, 𝑘𝑏 is the Boltzman constant and 𝑇0 is the desired 

temperature. In this way, the CSVR thermostat enables the correct distribution of kinetic energy 

and does not exhibit an ice-cube artefact.[215]  

 The Andersen thermostat is based on the stochastic collision method.[217] In this algorithm, 

the randomly selected particles in the system occasionally collide with the heat bath, resulting in a 

transfer of energy between them. Between these stochastic collisions, the system evolves according 

to the normal Newtonian equations of motion in the 𝑁𝑉𝐸 ensemble. The strength of the coupling 

is determined by the frequency of the occasional collisions. If the collisions are uncorrelated, the 

distribution of the time intervals between two collisions follows the Poisson distribution: 

 𝑃(𝑡; 𝜈) = 𝜈𝑒−𝜈𝑡 (2.61) 

where 𝑃(𝑡; 𝜈)𝑑𝑡 is the probability that the next collision will occur in the time interval [𝑡, 𝑡 + 𝑑𝑡]. 

The Anderson thermostat can provide good results or time-independent properties. However, it 

should not be used to study the dynamic properties of a system.[212] 

 One way to perform deterministic MD at constant temperature is to use the Nosé-Hoover 

thermostat, which uses an extended Lagrangian form to solve the equation of motion. The 

Lagrangian and Hamiltonian formulas are alternative expressions of classical mechanics that lead 

to the same solution as Newton’s equation. These alternative formulations are used by more 

advantageous techniques to solve the equations of motion in a more computationally effective way 

than the Newtonian formulation. The Lagrangian ℒ is defined as the difference between kinetic 

and potential energy, which can be written as follows:  

 ℒ(𝑞, 𝑞̇) = ∑
1

2
𝑚𝑖𝑞̇𝑖

2

𝑁

𝑖=1

− 𝑈(𝑞) (2.62) 
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where 𝑚𝑖 and 𝑞𝑖 are the mass and the coordinates of atom 𝑖 and 𝑈 is the potential energy.[218] The 

equations of motion can be solved in terms of coordinates 𝑞 and momentum 𝑝 using the 

Hamiltonian formulation where the Hamiltonian ℋ is defined as follows:  

 ℋ(𝑞, 𝑝) = 𝑝𝑞̇ − ℒ(𝑞, 𝑞̇, 𝑡) (2.63) 

In the Nosé-Hoover thermostat, the system of 𝑁 particles with the coordinates 𝑞𝑖′, the masses 𝑚𝑖′, 

momenta 𝑝𝑖′ and the potential energy 𝑈(𝑞′) is extended by an artificial dynamic variable 𝑠, which 

is associated with an effective mass 𝑄.[218] The equations of motion are solved for virtual variables 

𝑞, 𝑝, 𝑡 that are related to the real variables 𝑞′, 𝑝′, 𝑡′ as follows: 

 𝑞𝑖
′ = 𝑞𝑖 (2.64) 

 𝑝𝑖
′ =

𝑝𝑖

𝑠
 (2.65) 

 Δ𝑡′ =
Δ𝑡

𝑠
 (2.66) 

The form of extended Lagrangian in the Nosé-Hoover thermostat is:   

 ℒNose(𝑞, 𝑞̇) = ∑
1

2
𝑚𝑖𝑠

2𝑞̇𝑖
2

𝑁

𝑖=1

− 𝑈(𝑞) +
1

2
𝑄𝑠2 − 𝐿𝑘𝑏𝑇 ln(𝑠) (2.67) 

where L is the number of degrees of freedom whose value is chosen so that the canonical 

distribution is satisfied at equilibrium, 𝑘𝑏 is the Boltzmann constant, 𝑇 is the temperature and ln(𝑠) 

is an additional term needed to achieve a canonical ensemble. The Nosé-Hoover thermostat solves 

the equations of motion in the Hamiltonian formalism. If 𝑝𝑖 and 𝑝𝑠 are expressen in terms of 𝑞𝑖 and 

𝑠 as follows:  

 𝑝𝑖 =
𝜕ℒNosé

𝜕𝑞̇𝑖
= 𝑚𝑖𝑠

2𝑞̇𝑖 (2.68) 

 𝑝𝑠 =
𝜕ℒNosé

𝜕𝑠̇
= 𝑄𝑠̇ (2.69) 

then the Hamiltonian of the extended system can be written as:  

 ℋNosé(𝑝, 𝑞) = ∑
𝑝𝑖

2

2𝑚𝑖𝑠2

𝑁

𝑖=1

+ 𝑈(𝑞) +
𝑝𝑠

2

2𝑄
− 𝐿𝑘𝑏𝑇 ln(𝑠) (2.70) 

and the equations of motions are defined as:  

 
𝑑𝑞𝑖

𝑑𝑡
=

𝜕ℋNosé

𝜕𝑝𝑖
=

𝑝𝑖

𝑚𝑖𝑠2
 (2.71) 
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𝑑𝑝𝑖

𝑑𝑡
=

𝜕ℋNosé

𝜕𝑞𝑖
= −

𝜕𝑈(𝑞)

𝜕𝑞𝑖
 (2.72) 

 
𝑑𝑠

𝑑𝑡
=

𝜕ℋNosé

𝜕𝑝𝑠
=

𝑝𝑠

𝑄
 (2.73) 

 𝑑𝑝𝑠

𝑑𝑡
= −

𝜕ℋNosé

𝜕𝑠
=

∑
𝑝𝑖

2

𝑚𝑖𝑠2 − 𝐿𝑘𝑏𝑇

𝑠
 (2.74) 

Nosé-Hoover yields a correct 𝑁𝑉𝑇 and can be used to study the dynamic properties of a system as 

it is fully deterministic, i.e. it does not introduce any randomization of velocities that can change 

the dynamics of a system. However, it is not suitable for simulating a system that is too far away 

from the equilibrium, as it can lead to temperature oscillations.[212] Therefore, the common practice 

in MD simulations is to equilibrate the system with another thermostat, e.g. the Berensted 

thermometer, before performing MD simulations with the Nosé-Hoover thermostat. 

 Barostats keep the average pressure at the desired value by controlling the volume of a 

simulation box.[211] The Berensted barostat works in a similar way to the Berensted 

thermometer.[214] It scales the volume of the simulation box the towards the desired pressure P0 at 

each time step of the simulation according to:  

 
𝑑P

𝑑𝑡
=

P0 − P

𝜏𝑃
 (2.75) 

where P matrix is the current pressure, P0 matrix is the desired pressure, and 𝜏𝑃 is the pressure time 

constant. The coordinates are scaled by a scaling matrix 𝜇 calculated as follows:  

 𝜇𝑖𝑗 = 𝛿𝑖𝑗 −
Δ𝑡

3𝜏𝑃
𝛽𝑖𝑗(𝑃0𝑖𝑗 − 𝑃𝑖𝑗) (2.76) 

where 𝛽 is the isothermal compressibility of the system. In general, the value of 𝛽 is unknown but 

it is sufficient to use a rough estimate. Most liquids have the same value of 𝛽 and usually the value 

of water is used that is equal to 4.6 ×10–5 bar–1. This method does not allow the volume fluctuation 

and therefore does not generate the correct 𝑁𝑃𝑇 ensemble.  

 The other most commonly used barostat is the Parrinello-Rahman barostat, which is based 

on the extension of Hamilton's equations of motion, similar to the Nosé-Hoover thermostat.[213,219] 

This barostat makes it possible to vary both the volume and the shape of a simulation box according 

to the equation of motion:  

 
𝑑b2

𝑑𝑡2
= 𝑉W−1b′−1(P − P0) (2.77) 
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where b is the matrix of the box vectors, 𝑉 is the box volume and W is the matrix parameter that 

determines the strengths of the coupling which can be calculated from the approximate isothermal 

compressibility 𝛽 and the box size. Just like the Nosé-Hoover thermostat, the Parinello-Rahman 

barostat also suffers from large volume oscillations when the initial system is far from equilibrium, 

which can cause the simulation to crash. Therefore, before performing an 𝑁𝑃𝑇 simulation with a 

Parinello-Rahman barostat, the system should first be equilibrated to the desired pressure using a 

different type of barostat, e.g. a Berenested barostat. 
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2.3.5.  QSA/PR mathematical modelling 

The Quantitative Structure Activity/Property Relationship (QSA/PR) methodology is a very 

valuable tool for the mathematical description of the relationship between the activity (QSAR) or 

another property (QSPR) and the structural features of the molecule. The first QSAR model was 

developed by Corwin Hanchin 1961.[220] Since then, QSA/PR methodology has evolved from 

simple regression models to models capable of analysing very large numbers of molecules with 

different structures using machine learning techniques. QSA/PR models are based on the principle 

that two molecules with similar structures show comparable behaviour under similar environmental 

conditions and the differences in their behaviour can be explained by the variations in their 

structure. Thus, if one knows the activity or other property of a large number of molecules, one can 

predict the activity or other property of a structurally similar molecule without the need for 

experimental data.[221] QSA/PR models have been widely used in research, especially in drug 

development and in assessing the harmfulness of substances, materials or nanomaterials to human 

health and the environment. QSA/PR models are nowadays also used as guidelines for the 

development of regulatory measures, especially for the assessment and authorisation of the use of 

certain chemicals.[222]  

 QSA/PR models are developed using a statistical regression analysis that estimates the 

relationship between dependent (𝑌) and independent (𝑋) variables. In QSA/PR models, dependent 

or response variable (𝑌) is any type of molecular response derived from experiments or calculations 

that depends on the structural properties of the molecule. The response variables are often referred 

to as endpoints. The model can only be as good as its endpoints, so these must be both accurate 

and precise.[223] The independent variables (𝑋) are the structural properties of the molecule in 

numerical form, known as descriptors. The number of endpoints should be as high as possible in 

order to find the hidden relationship between the response variables and the structural features of 

the corresponding molecules. The “rule of thumb” in QSA/PR modelling is that the number of 

endpoints should be at least five times greater than the number of descriptors used in a model. It is 

also desirable to have a wide range of endpoint values to cover a variety of molecules so that the 

resulting model has a good range of applicability and is able to reliably predict the responses of 

new, untested molecules. To evaluate the predictive power of a model, the data set is usually split 

into two parts: 
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• training set – used to develop a model,  

• test set – used to test the predictivity of a model.  

The values of the responses in the test set should lie within the range of the response values of the 

training set in order to avoid extrapolation of the data when estimating the predictive power of a 

model. After the regression analysis, it is important to test the resulting model for its goodness-of-

fit, robustness and predictive power using statistical validation methods. In addition to the 

statistical prediction of data, some models can also be used to draw conclusions about the 

underlying mechanism that results from the description of the most influential descriptors of the 

model. 

 

Figure 2.11. A general scheme of QSA/PR model development.  
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2.3.5.1.  Multiple linear regression analysis 

Many different multivariate regression analyses are used in QSA/PR modelling, e.g., Multiple 

Linear Regression, Principal Component Regression, Partial Least Squares, Artificial Neural Nets 

and other.[224] Multiple Linear Regression using ordinary least squares is still the most used method 

today.  

Multiple linear regression (MLR) assumes the linear relationship between two or more 

independent variables (𝑥) and dependent variable (𝑌).[225] The general MLR model can be written 

as:  

 𝑌 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑘𝑥𝑘 + 𝜖 (2.78) 

where 𝜖 is a random error with a normal distribution and mean that equals 0 (𝜖~𝑁(0, 𝜎2)). 

𝑎, 𝑏1, 𝑏2, … , 𝑏𝑘 are regression parameters, and 𝑥𝑖 , 𝑖 = 1,2, … , 𝑘, are independent variables, 

descriptors. The values of the regression parameters are most often determined by the ordinary 

least square (OLS) method that minimizes the square of the residuals, that is, it finds the minima 

of the following function:  

 𝑓(𝑎̂, 𝑏̂1, … , 𝑏̂𝑘) = ∑[𝑦𝑗 − (𝑎 + 𝑏1𝑥1𝑗 + 𝑏2𝑥2𝑗 + ⋯ + 𝑏𝑘𝑥𝑘𝑗)]
2

𝑛

𝑗=1

 (2.79) 

In functional minima, the partial derivation for all parameters equals 0. The further expansion leads 

to the set of normal functions:  

 

𝑎̂𝑛 + 𝑏̂1∑𝑥1𝑗 + 𝑏̂2∑𝑥2𝑗 + ⋯ + 𝑏̂𝑘∑𝑥𝑘𝑗 = ∑𝑦𝑗                                  

𝑎̂∑𝑥1𝑗 + 𝑏̂1∑𝑥1𝑗
2 + 𝑏̂2∑𝑥1𝑗𝑥2𝑗 + ⋯ + 𝑏𝑘∑𝑥1𝑗𝑥𝑘𝑗 = ∑𝑥1𝑗𝑦𝑗          

    ⋮                                           ⋮                            ⋮                            
𝑎̂∑𝑥𝑘𝑗 + 𝑏̂1∑𝑥1𝑗𝑥𝑘𝑗 + ⋯ +𝑏𝑘−1∑𝑥𝑘−1,𝑗𝑥𝑘𝑗 + 𝑏𝑘∑𝑥𝑘𝑗

2 = ∑𝑥𝑘𝑗𝑦𝑗

 (2.80) 

The result of solving the set of normal functions are the values of 𝑎̂, 𝑏̂1, 𝑏̂2, … , 𝑏̂𝑘 which correspond 

to the estimated values of 𝑎, 𝑏1, 𝑏2, … , 𝑏𝑘.  

2.3.5.2.  Fitting criteria 

The goodness-of-fit of the QSA/PR model is assessed by calculating the statistical fit parameters. 

In the following equations, 𝑛 stands for the total number of endpoints, 𝑝 for the total number of 

descriptors (independent variables), and 𝑥̅ and 𝑦̅ for the mean values of variables 𝑥 and 𝑦, i.e.:  

 𝑥̅𝑘 = ∑
𝑥𝑘𝑗

𝑛

𝑛

𝑗=1

                 𝑦̅ = ∑
𝑦𝑗

𝑛

𝑛

𝑗=1

 (2.81) 
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The residuals (𝑒) are the difference between the values of the response variables 𝑦 and the ones 

estimated by the model 𝑦̂ for the given variables 𝑥, i.e.:  

 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (2.82) 

The standard error of estimate (𝑠) is calculated as:  

 𝑠 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛 − 𝑝 − 1
 (2.83) 

 

Correlation coefficient (𝑅) measures the linear correlation between two sets of data as:  

 𝑅 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2√∑(𝑦𝑖 − 𝑦̅)2
 (2.84) 

The values of the correlation coefficient range from –1 to 1. Values closer to –1 or 1 indicate a 

strong negative or positive linear correlation, while as the values close to 0 indicate that there is no 

linear correlation between the data sets. The squared value of the correlation coefficient, the so-

called coefficient of determination (𝑅2), is usually used to assess the goodness of fit. 𝑅2 indicates 

the ratio of the variation in 𝑦 values that can be predicted by a linear model and is calculated as 

follows:  

 𝑅2 =
𝑀𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 (2.85) 

where 𝑀𝑆𝑆 is the model sum of squares, 𝑅𝑆𝑆 is the sum of the squares of the residuals, and 𝑇𝑆𝑆 is 

the total sum of the squares of the difference between the response and the means, calculated as:  

 𝑀𝑆𝑆 = ∑(𝑦̂𝑖 − 𝑦̅)2

𝑛

𝑖=1

 (2.86) 

 𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 (2.87) 

 𝑇𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 (2.88) 

Although adding more dependent variables (descriptors) to the model leads to higher 𝑅2 values, 

the models with a large number of descriptors can often lack the ability to reliably predict the 

responses for the similar data set. To avoid overfitting, the adjusted coefficient of determination 

(𝑅adj
2 ) can be used as it also considers the number of descriptors in the model. The 𝑅adj

2  is calculated 

as follows:  



2. Literature review 

Anamarija Pulitika   50 

 𝑅adj
2 = 1 −

𝑛 − 1

𝑛 − (𝑝 + 1)
×

𝑅𝑆𝑆

𝑇𝑆𝑆
 (2.89) 

The Fisher statistics (𝐹) evaluates the statistical significance of the regression model. The 𝐹-value 

is the ratio between the variation that can be explained by the model for a given data set and the 

variation that cannot be explained by the model, and is calculated as: 

 𝐹 =
𝑀𝑆𝑆

𝑅𝑆𝑆
×

𝑝

𝑛 − 𝑝 − 1
 (2.90) 

The statistical parameters explained above are used to select a model that describes the relationship 

between response variables and descriptors well. Internal and external validation methods are used 

to further assess the robustness and predictive power of the model. 

2.3.5.3.  Model validation 

The robustness and stability of the model can be tested by methods of internal validations.[226] 

Leave-One-Out (LOO) and Leave-Many-Out (LMO) are cross-validation methods that place one 

or more molecule from a training set to a test set and then calculates the new QSAP/R model. LOO 

omits one molecule from the training set and builds a new model with 𝑛 − 1 endpoints. The method 

repats this process each time omitting a different molecule. For each new model, the response of 

the omitted molecule is predicted, 𝑦̂𝑖. Finally, the coefficient of cross validation (𝑄2) is calculated 

as:  

 𝑄2 = 1 −
𝑃𝑅𝐸𝑆𝑆CV

𝑇𝑆𝑆
 (2.91) 

Where 𝑇𝑆𝑆 is the total variation in 𝑦 values and 𝑃𝑅𝐸𝑆𝑆CV is the variation in predicted values 𝑦̂ of 

the molecules placed in the test set, calculated as:  

 𝑃𝑅𝐸𝑆𝑆CV = ∑ (𝑦𝑖 − 𝑦̂𝑖
𝑖

)
2

𝑛

𝑖

 (2.92) 

𝑄2 depends on the number of descriptors. If descriptors that are significant to the model are added, 

the values of 𝑄2 will increase. Otherwise, it will decrease.[223] LMO method of cross-validation 

places a random set of molecules in a test set and builds a QSA/PR model with the remaining 

molecules in a training set. LMO can leave out a various number of molecules from the training 

set and therefore it is possible to have more iteration in comparison with LOO method. The 

maximum number of molecules LMO can leave out is 50% of the total number of molecules. If the 

model is stable and robust, the LMO method will produce a set of similar QSA/PR models.  
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 Y-scrambling is the internal validation method used to test whether the obtained regression 

model is just a result from the random correlation between variables or is there a real linear 

relationship between them. In this method, the values of response variables 𝑦 are scrambled and 

randomly assigned to other molecules. The new QSA/PR models are then developed using a 

scrambled data. The process of scrambling and developing a model is repeated a few hundred 

times. The 𝑅2 or 𝑄2 values of all the models are compared. If the original model is not a result of 

random correlation, the new models with mixed data should have a significantly lower values of 

𝑅2 and 𝑄2.  

 The external validation is used to test a predictive power of a model. The responses of the 

test molecules are calculated by including the values of their descriptors 𝑋 in the model equation. 

The model is then validated by calculating different statistical parameters. There are many different 

criteria to validate a predictive power of a model. Usually, the above-mentioned equations for 

fitting criteria are also used for external validation with the difference that they use values of 

responses 𝑦𝑖 and predicted values 𝑦̂𝑖 of a test set, and not a training set. The concordance correlation 

coefficient 𝐶𝐶𝐶 is a proposed method for the external validation as it is more precautionary in 

accepting QSA/PR models. 𝐶𝐶𝐶 is calculated as follows:  

 𝐶𝐶𝐶 =
2 ∑ (𝑦𝑖 − 𝑦̅)(𝑦̂𝑖 − 𝑦̅̂)𝑛

𝑖=1

∑  (𝑦𝑖 − 𝑦̅)2 +  ∑ (𝑦̂𝑖 − 𝑦̅̂)
2

+ 𝑛(𝑦̅ − 𝑦̅̂)
2𝑛

𝑖=1  𝑛
𝑖=1

 (2.93) 

Where 𝑦𝑖 is the response of a molecule from the test set, 𝑦̅ is the mean value of the responses from 

the test set, 𝑦̂𝑖 is the predicted value of the response of molecule from the test set, and 𝑦̅̂ is the mean 

of predicted values of the responses from the test set.[223]  

2.3.5.4.   Molecular descriptors 

Descriptors are chemical characteristics of a molecule in numerical form, which are used as 

independent variables in QSA/PR. Molecular descriptors can be experimentally measured 

physicochemical properties of the molecule (e.g. octanol-water partition coefficient, polarizability, 

molar refractivity) or theoretically derived from the structural representation of molecules.[227] 

With the increasing popularity and applicability of the QSA/PR methodology, the need for new, 

well-defined descriptors capable of capturing some specific chemical information from the 

molecular structure is also growing. Several thousand descriptors have been proposed so far.[228] 

Various software packages can be used to quickly retrieve the molecular descriptors from the 
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provided molecular structure, e.g. Dragon software can be used to calculate about 5000 

descriptors.[229] According to the standardised rules, all descriptors must:[230]  

• be invariant to atom labelling and numbering, 

• be invariant to the molecule roto-translation, 

• be defined by an unambiguous algorithm, 

• have a well-defined applicability on molecular structures. 

This means that a descriptor must be well-defined, should not depend on manipulations that do not 

affect the molecular structure, and that it should be known to which class of molecules it can be 

applied. Furthermore, it is desirable that a descriptor is simple and easy to interpret, possibly related 

to an experimental property but not derived from experiments, and able to account for small 

variations in molecules, as in isomers. 

 Molecular descriptors can be categorised into 0D, 1D, 2D, 3D and 4D descriptors according 

to different representations of a molecular structure.[230] 0D and 1D descriptors are constitutional 

descriptors that do not contain information about the topology of molecules, such as the type and 

number of atoms, the number of bonds and the molecular weight of a molecule. While the 0D 

representation is the simplest chemical formula, the 1D representation contains a list of the 

structural fragments of a molecule. 2D descriptors or topological descriptors are derived from a 2D 

representation of a molecule, i.e. a molecular graph. 2D descriptors consider the connectivity of 

the atoms in a molecule. 3D descriptors or geometry descriptors take into account the arrangement 

of atoms in a three-dimensional space. The 3D structure of a molecule should be optimised before 

calculating 3D descriptors. 4D descriptors additionally take into account the electron distribution 

and the interactions of the molecule with the space around the molecule or the multiple 

conformational states of a molecule.[231] 

To create a valid QSA/PR model, it is important to select only a small set of descriptors that are 

relevant to the modelled activity or property. The selection process is quite difficult and various 

computational methods have been developed to speed up and improve the selection, with the 

genetic algorithm (GA) being the most popular method.[232]   



2. Literature review 

Anamarija Pulitika   53 

2.3.5.5.  Genetic algorithm (GA) 

The genetic algorithm (GA) is an optimisation method used to select significant descriptors.[233] 

The GA mimics the principles of evolutionary biology by representing a subset of variables as a 

binary string called a chromosome. The value of a particular position on a chromosome (gene) can 

either be 1 if the variable is included in the model, or 0 if the variable is not included in the model. 

Each chromosome represents a model with its own set of variables. A set of chromosomes forms a 

population.[234] The basic steps of the GA methodology are as follows:[235] 

1. generation of the initial population,  

2. crossover operation,  

3. mutation operation,  

4. comparison operation.  

In the first step, the models are created with randomly selected variables. The models with the 

highest fitness values are included in the elite population. Subsequently, well-fitting models are 

selected as “parent" models and the crossover operations are performed to create new models. The 

probability of being selected as a parent model is inversely proportional to the fitness value of a 

model. During mutation, all individuals are randomly changed. All new models and the elite 

population are compared with each other, and the models with the highest fitness score are included 

in an elite population. The GA steps are repeated until convergence is reached, i.e. until the overall 

fitness of the elite population can no longer be improved. 
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3.  Methods 

3.1.  Computational details 

3.1.1.  DFT calculations 

All calculations were performed with Gaussian 16 software for solving the electronic structure 

equations.[236] Geometry optimizations and interaction energy computations have been performed 

with M06-L combined with def2-SVP basis set. Vibrational frequencies were calculated to ensure 

that the studied systems are true minima of the corresponding potential energy surfaces. Grimme’s 

3D empirical dispersion and density fitting were used in all computations.  

Analysis of intermolecular weak interactions was performed in IGMPlot-3.08 program[237] 

using Independent gradient model based on Hirshfeld partition of molecular density (IGMH)[238,239] 

and Visual Molecular Dynamics (VMD) program[240] to generate colour filled isosurface.  

 

3.1.2.  QSA/PR formulation 

The molecular descriptors were calculated by Dragon 6.0. software[241] that uses empirical and 

semi-empirical methods to calculate the structural features of chosen molecules. The models were 

developed using QSARINS 2.2.4 software; the calculated energies (𝐸int) were set as the response 

variables and the Dragon descriptors were used as independent variables. Genetic algorithm (GA) 

method[233] was used to select the most relevant descriptors and the parameters were set as 

following: 100 random models, generation size of 500 interaction and the mutation probability 

specified as 20%. Multiple Linear Regression Analysis (MLRA) method was used to develop 

models with 1-5 variables. 

Models were selected and validated by comparing the common statistical parameters such 

as: coefficient of determination (R2), the leave-one-out cross-validation coefficient (Q2
LOO), F-ratio 

between the variances of observed and calculated property (F), probability value for calculated F 

(p), standard error (s), and standard error of the predictive residue of sum of squares (Spress). The 

validation of models for each response variable was also performed by Leave Many Out (LMO) 

and “Y-scrambling” test. Williams plots were used to study the applicability domain (AD) and 

determine the possible response variable (Y) and structural (X) outliers.[223] 
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3.1.3.  Molecular dynamic simulations 

All molecular dynamics simulations were carried out using GROMACS 2022.1. with the OPLS-

AA force field. Both assembly and adsorption simulations were conducted in the NPT ensemble 

using the leapfrog algorithm. The pressure was maintained at 1 bar using the isobaric Parrinello-

Rahman barostat with a coupling constant of 2.0 ps, while the temperature was set to 300 K and 

regulated with the velocity-rescale algorithm, applying a coupling constant of 0.1 ps. Periodic 

boundary conditions (PBC) were applied in all three dimensions, and the systems were solvated 

using the SPC water model. A cutoff value of 1.2 nm was used for both van der Waals and 

electrostatic interactions, with the latter accounted for using the particle-mesh Ewald (PME) 

summation method. Bonds involving hydrogen atoms were constrained using the LINCS 

algorithm, which allowed the use of an increased time step of 2 fs. The simulations were run for 

10 ns, and snapshots of the systems were rendered using VMD. 

 

3.2.  Experimental details 

3.2.1.  Materials  

Polyethylene terephthalate (PET) granules were obtained from Sigma Aldrich (Saint Louis, MO, 

USA). Pesticides alachlor (ALC; C14H20ClNO2, 99.8%), diuron (DIU; C9H10Cl2N2O, 99.6%) 

and isoproturon (IPT; C12H18N2O, 99.8%) were purchased from Sigma-Aldrich (Burlington, 

MA, USA).  

 

3.2.2.  Microplastic preparation 

PET MP were prepared from PET granules. PET granules were melted and thermally aged at a 

temperature of 240 °C for 24 h  in a drying oven (Memmert UN55, Germany). Pristine granules 

and thermally aged PET samples  were ground in a cryomill (CryoMill, Retsch, Germany) and then 

sieved by a vibrate sieve (AS 200 basic, Retsch, Germany) to isolate the fraction sized 100–200 

µm that was used in further experiments.  

 



3. Methods 

Anamarija Pulitika   57 

3.2.3.  Microplastic characterisation 

Scanning electron microscopy (SEM) was used to analyse the surface morphology of pristine and 

aged PET MP using a Vega III scanning electron microscope (SEM) (Tescan, Brno, Czech 

Republic). The specific surface area of pristine and aged PET MP was determined by the multiple 

BET method (Micromeritics, Gemini) using nitrogen gas as the adsorbate.  

X-ray photoelectron spectroscopy (XPS) was performed on both pristine and aged PET MP 

samples with and without adsorbed organic pollutants to evaluate the effect of thermal aging on 

the PET MP surface and its interaction with pollutants. The samples were mounted on adhesive 

graphite tapes and analysed without applying a conductive coating via vapor phase deposition. 

Measurements were carried out using a PHI VersaProbe III (Version AD) system (PHI, 

Chanhassen, MN, USA) equipped with a hemispherical analyser and a monochromatic Al Kα X-

ray source. Survey spectra were acquired at a pass energy of 224 eV with a step size of 0.8 eV. 

Data acquisition was performed using ESCApe 1.4 software, and spectral fitting of the C 1s level 

was carried out using CasaXPS 2.3.15 software. 

 

3.2.4.  Adsorption experiment 

Solutions of IPT, ALC and DIU (50 µmol dm-3) were prepared in ultra-pure water (ρ = 18 MΩ  cm, 

EMD Millipore, Burlington, MA, USA). A 1 ml aliquot of adsorbate solution was added in an 

Eppendorf microtube containing 100 mg of prepared PET MP. The microtubes were then placed 

in an OLS Aqua Pro orbital shaker (Grant, Royston, UK) and incubated at 25 °C with a shaking 

speed of 120 rpm for one week. All experiments were conducted in triplicate. Control samples 

contained only the adsorbate solution without PET MP. 

 After one week, the samples were filtered through 0.45 μm PTFE filter (Chromafil, 

Macherey-Nagel, Düren, Germany). The remaining adsorbate concentration in the filtered solution 

was analysed using high-performance liquid chromatography (HPLC, LC20, Shimadzu, Japan) 

coupled with UV/DAD detector (SPD-M20A, Shimadzu, Japan).
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4.  Results and discussion 

4.1.  Ab initio study on the role of functional groups in  

PET MP-pollutants interactions 

In this part of the thesis, the study focused on understanding how different functional groups, 

commonly present in water pollutants, such as pesticides, pharmaceuticals and personal care 

products influence adsorption interactions with microplatic. The study aimed at analysing the 

interactions on molecular level employing the tools of computational chemistry, specifically DFT 

methods, to provide deeper insights into the nature of these interactions. 

PET MP was selected due to its widespread presence in the environment and its significant 

impact on both ecological systems and human health.[14,15] The molecular structure of PET was 

chosen to enable the study of specific interactions such as hydrogen bonds or van der Waals 

interactions across multiple adsorption sites, representing the non-homogeneous surface 

characteristics of real-world PET MP. The organic molecules examined in this study were selected 

through a careful analysis of the structures of common pharmaceuticals, pesticides, and personal 

care products, as depicted in Figure 4.1. This group of potential water pollutants includes 

compounds containing aromatic rings with various functional groups. Hydroxyl groups are present 

in pollutants such as 17β-estradiol, amoxicillin, nonylphenol, benzylparaben, butylparaben, and 

bisphenol A. Pollutants containing carboxyl groups include diclofenac and ibuprofen, while 

naproxen and oxybenzone feature methoxy groups, among others. Amide functional groups are 

part of oxytetracycline and carbamazepine, while trimethoprim and procainamide contain amine 

groups. Chlorine is a component of diuron, triclosan, and triclocarban. Dicamba, a pesticide, 

contains a benzene ring with carboxyl and methoxy groups along with two chlorines. Atrazine and 

simazine, common pesticides, are also included due to their triazine structures.  
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Figure 4.1. Structures of common organic pollutants in water. 

 

This group of water contaminants shares several functional groups expected to play a significant 

role in their interactions with the surface of microplastic particles, particularly those with pristine 

or aged forms featuring oxygen-containing groups such as hydroxyls, carbonyls, and carboxyls. 



4. Results and discussion 

Anamarija Pulitika   61 

These functional groups are represented by the simplified molecules shown in Figure 4.2. For 

computational efficiency and to preserve the essential chemical interactions, these reference 

molecules were considered as model water pollutants. 

.  

Figure 4.2. Organic pollutant molecular models. 

 

4.1.1.  Calculation of weak interactions 

The influence of different functional groups was analysed by comparing the interaction energies 

between chosen water pollutant models and model PET. The interaction energies are determined 

using the following equation: 

 𝐸int = 𝐸mPET/pollutant − 𝐸mPET − 𝐸pollutant (4.1) 

Where 𝐸mPET/pollutant represents the total energy of the model PET/pollutant complex, 𝐸mPET the 

energy of model PET unit, and 𝐸pollutant the energy of the pollutant unit. It is important to note that 

the stronger interactions are indicated by more negative 𝐸int. The interactions between PET MP 

and organic molecules are already described in the literature as weak physical interactions. As 

outlined in Section 2.3.3.2. , one of the challenges in calculating weak interaction energies is the 

basis set superposition error (BSSE). BSSE is a mathematical error that arises due to the use of a 

finite basis set in calculations. To address this issue, the classical counterpoise correction (CP) 

method was applied. The CP method evaluates the energy of each unit within the complex using 

the basis set of the entire complex, where the atoms of the other unit are represented as "ghost 

atoms". These ghost atoms are characterized by the absence of nuclear charges and electrons, while 

the geometry of the individual units remains unchanged from that in the complex.  
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4.1.2.  Method performance 

Prior to modelling adsorption interactions and calculating weak intermolecular interactions, it is 

essential to evaluate the performance of DFT functionals, considering both their accuracy and 

computational cost. DFT functionals are designed with specific applications in mind, making the 

choice of the most suitable functional highly dependent on the studied system.[167] A well-known 

limitation of DFT is its inability to account for dispersion interactions,[162] which are crucial in 

systems where weak interactions dominate. Dispersion forces arise from the correlated fluctuations 

of electron density between atoms or molecules, exhibiting non-local character as they depend on 

the electron correlation over long distances.[242] In contrast, most DFT methods primarily rely on 

local or semi-local approximations, making them insufficient for accurately capturing such 

interactions. These limitations can lead to significant errors in systems where weak interactions 

dominate.[243]  

As known from the literature, the adsorption of organic pollutants to microplastic is 

controlled by weak interactions.[22,67] Consequently, addressing these limitations is essential for 

accurately modelling such systems. This requires a special care when selecting appropriate DFT 

functional by assessing the performance against more accurate, reference method. In this work, the 

performance of DFT functional was tested with respect to second order Møller-Plesset perturbation 

theory (MP2) method, which is commonly used to calculate non-covalent interactions with a 

reasonably accurate results for small systems.[244,245] Several functional were considered, including 

B3LYP and Minnesota functionals (M05, M05-2X, M06, M06-2X, M06-HF and M06-L) from 

Truhlar group as a possible candidates. B3LYP was considered as one of the most popular and 

widely applied hybrid functional which combines Hartree-Fock exchange with gradient-corrected 

correlation,[166,246–248]  and is also found used in calculations of weak interactions.[132] Minnesota 

functional are specially developed to describe dispersion interactions. M06-L is a non-hybrid 

functional from Minnesota family of DFT functionals developed to treat non-covalent interactions, 

thermochemistry, and thermochemical kinetics more accurately. One of the notable strengths of 

M06-L is its robust performance across a diverse range of molecular systems and properties, apart 

of the fact that is considerably less computationally expensive than conventional hybrid 

functionals. Moreover, local functionals allow the use of density fitting for basis set to improve the 

calculations of Coulomb forces.[249–251] This all makes M06-L functional a very promising 

candidate for further calculations. Also we considered M05,[252] known for its accurate treatment 
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of non-covalent interactions, M05-2X,[253] the range-separated hybrid exchange-correlation 

functional and M06[249] functional optimized for main group thermochemistry, thermochemical 

kinetics, and non-covalent interactions. Finally, we considered M06-2X,[249] a global hybrid 

functional with increased Hartree-Fock exchange, and M06-HF.[254] All DFT calculations were 

performed using Grimme’s D3 empirical dispersion correction[255] which improves the results of 

DFT calculations for weakly bound systems without additional cost.[256] 

 To test the method performance, the interactions were calculated between the terephthalic 

acid and ten systems of small organic pollutant molecules chosen previously in two different 

configurations represented in Figure 4.3. In the first configuration (TA I), the functional group of 

the pollutants interacts with the carboxyl group of the terephthalic acid, and in the second 

configuration (TA II), the aromatic ring of the pollutants is located above the aromatic ring of the 

terephthalic acid.  

 

Figure 4.3. Structural representation of terephthalic acid (TA) and the model pollutants in two 

configurations. The blue sphere represents the position of model pollutant’s functional group. 

 

MP2 method with smaller basis set generally underestimates non-covalent interactions, and 

the use of a larger basis set typically improves the results for hydrogen bonded systems, but can 

lead to overbinding of systems that interact mainly by dispersion forces.[245,257] For that reason, we 

used three basis sets def2-SVP, def2-TZVP and def2-TZVPP to calculate energy using MP2 

method. The interaction energies and basis set superposition errors (BSSE) are shown in Figure 

4.4. The difference between the interaction energies calculated using def2-SVP and def2-TZVP 

averaged 4.5 kcal mol–1 for TA II, and 1.3 kcal mol–1 for TA I. Further expanding the basis set to 

def2-TZVPP increased interaction energies only by 0.3 kcal mol–1 on average which is not a 

significant difference. In contrast, the difference in the energies calculated by M06-L method with 

def2-SVP and def2-TZVP averaged 0.3 kcal mol–1, as DFT methods tend to converge faster than 

MP2 with respect to basis set. The same trend is observed for BSSE. Therefore, we used MP2 
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method with def2-TZVP basis set as a reference to choose the appropriate functional, and DFT 

calculations were performed using def2-SVP basis set.[258,259] 

 

Figure 4.4. a) Interaction energies and b) basis set superposition error calculated for the interactions of the 

model organic pollutants and terephthalic acid in two configurations (TA (upper) I and TA II (lower)) 

using MP2 method. 
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The interaction energies calculated by MP2/def2-TZVP method and DFT method with 

def2-SVP basis set are shown in Figure 4.5 a), and the mean average errors (MAE) and root mean 

square errors (RMSE) of DFT methods compared to MP2 are shown in Figure 4.5 b). For 

configuration TA II, the interaction energies calculated by DFT methods were generally lower than 

those obtained using MP2/def2-TZVP. However, the variations among the functionals in this 

configuration were not substantial enough to determine the most suitable functional based on these 

values alone. The differences between functionals became more evident in configuration TA I. In 

this case, the functional groups of the model organic pollutants interact with the carboxylic group, 

forming stronger interactions such as hydrogen bonds. Overall, all the functionals tend to 

overestimate interaction energies, with this overestimation being particularly evident for systems 

with stronger adsorption energies. This effect is most pronounced for the M06-HF functional, 

which significantly overestimates interactions where hydrogen bonds can be formed.[260] More 

detailed information about the difference between interaction energies for each system are shown 

in Figure A 1 and Figure A 2. 

Finally, considering both configurations, M06-L demonstrated the most similar results to 

MP2, making it a strong candidate for further analysis. While some other functionals, such as M05, 

M06, M06-2X also showed reasonably good performance, the differences between these methods 

and MP2 were not significant enough to decisively recommend one over the others. However, 

M06-L stood out not only for its reliable accuracy in reproducing MP2-calculated interaction 

energies but also for being a pure functional, which makes it computationally less demanding 

compared to hybrid functionals. This computational efficiency, combined with its ability to balance 

accuracy and cost, was a critical factor in its selection. Given these considerations, all subsequent 

calculations were performed using M06-L/def2-SVP method with density fitting and D3 empirical 

dispersion. 
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Figure 4.5. Method performance of the selected DFT/def2-SVP methods against MP2/def2-TZVP method: 

a) interaction energies and b) mean average errors (MAE) and root mean square errors (RMSE) of 

interaction energies calculated by DFT/def2-SVP compared to the energies calculated by MP2/def2-TZVP 

method. The interactions were calculated between terephthalic acid and the model organic pollutants in 

two different configurations (TAI (upper) and TAII (lower)). 
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4.1.3.  PET model adsorption sites and size effects 

Polyethylene terephthalate (PET) is composed of elongated polymer chains that are held together 

through noncovalent intermolecular forces.[261] A study conducted by Cortes-Arriagada et al.[132,135] 

point out that the linear model commonly used for molecular modelling of MP has significant 

limitations. Specifically, it was shown that this model can underestimate the role of dispersion 

forces in favour of electrostatic forces. Based on these findings, the authors recommended adopting 

a folded nanoparticle model as a more accurate representation. Therefore, in the present work, PET 

MP was modelled in a folded form of nanoparticle.  

 The construction of PET model was initiated by optimizing a starting configuration 

consisting of two dimers of terephthalic acid. Following each optimization cycle, a monomeric unit 

was appended to each of the existing chains. The iterative optimization led to several models with 

4 to 12 monomeric units. To obtain an estimation of the strength of the interactive forces between 

two chains, the interaction energies were calculated and presented as a function of the “number of 

PET units”. The results depicted in Figure 4.6 suggest that the interaction energies converge to a 

value of about –9 kcal mol–1 per unit at the M06-L level of theory.  

 

Figure 4.6. Interaction energies per monomer of two PET chains.  

 

Considering the size and shape of PET models, as well as the number of atoms for the 

reasons of computational efficiency, a model built of PET consisting of 2 chains with 3 monomers, 

with 138 atoms, and 620 electrons in total (C60H52O26) was selected for further calculations. This 

model is hereafter referred to as mPET. The surface of mPET was analyzed based on its molecular 

electrostatic surface potentials (MEP), as shown in Figure 1.9, to identify potential adsorption sites 
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representing various parts of the PET molecule. Distinct regions of excess negative and positive 

charges were observed, which are expected to serve as adsorption sites for specific pollutants 

through electrostatic interactions. Specifically for the PET model under consideration, four 

potential adsorption sites of interest were identified. 

Adsorption site I corresponds to the carboxyl group at the end of the PET chain. This site 

is less common in real polymers due to the limited number of terminal units compared to the overall 

surface area. However, the ageing of microplastic in nature may lead to chain breakage and the 

formation of new oxygen-containing functional groups, increasing the number of sites similar to 

adsorption site I, which could alter the adsorption capacity for pollutants. Adsorption site II is a 

benzene ring fused in a PET chain chosen to study the role of π-π interactions. Finally, adsorption 

sites III and IV represent the surface of PET, far from terminal units. These four adsorption sites 

are considered to be among the most common on the surfaces of micro-sized particles and are likely 

to play a key role in determining adsorption behaviour. 

 

Figure 4.7. Structure and molecular electrostatic potential (MEP) of mPET. Red parts represent the excess 

of negative charge on the surface, and blue excess of positive charge. Adsorption sites I, II, III and IV are 

circled with orange lines. 
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To validate the size of the model and assess the effect of model size on pollutant 

interactions, the interaction energies of phenol, a representative model pollutant, were calculated 

and compared for PET models of two different sizes. Specifically, the previously selected mPET 

model (comprising 2 chains with 3 monomers) was compared with a second model twice as large, 

consisting of 2 chains with 6 monomers and approximately 2 nm in length. The interaction energies 

between phenol and the two models were calculated for adsorption sites I and II. The adsorption 

energy of phenol at adsorption site I of the mPET model was found to be –21.30 kcal mol–1, while 

for the larger model, it was –21.27 kcal mol–1. Similarly, the interaction energies for adsorption 

site II were –18.63 kcal mol–1 for mPET and –18.71 kcal mol–1 for the larger model as shown in 

Figure 4.8. These differences in interaction energies are minimal, indicating that the size of the 

model does not significantly affect the interactions. Therefore, the mPET model is considered valid 

for studying these interactions, as the results suggest that the interaction energies are largely 

independent of the model size. The Cartesian coordinates of the optimized final geometry are listed 

in Table A 6. 

 

Figure 4.8. The effect of model PET size on the interaction energy of phenol and a) adsorption sites I and 

b) adsorption site II calculated by M06-L/def2-SVP method. 
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4.1.4.  Molecular interactions 

With the carefully chosen mPET structure and its identified adsorption sites of interest, the next 

step was to calculate their interactions with model organic pollutants. Additionally, the affinity of 

water molecules for the adsorption sites was examined to compare their interactions with those of 

the pollutants. These interactions were evaluated both in a vacuum and in implicit water using 

IEFPCM solvation model to examine the influence of the polarization field on the interaction 

energy.  

 The results are shown in Figure 4.9.  Upon a detailed analysis of the data corresponding to 

the adsorption site I (Figure 4.9 a)) which refers to the terminal carboxyl group, it becomes evident 

that one could classify the considered model pollutants into three groups based on their interaction 

energies with adsorption site I. The first group consists of phenylacetic acid, benzoic acid, and 

benzamide, which are capable of forming two strong hydrogen bonds with the terminal carboxyl 

group. Their interaction energies with adsorption site I are about –31 kcal mol–1, which is much 

stronger than the interactions between adsorption site I and the water molecule. Therefore, it is 

reasonable to speculate that these model pollutants could, to a certain extent, adsorb onto PET in 

an aqueous environment. Aniline, phenol, anisole, triazine, and chlorotriazine can be placed in the 

second group because their interaction energies with adsorption site I are approximately –20 kcal 

mol–1. These energies are comparable to the interaction energy of a water molecule and adsorption 

site I, indicating a weaker affinity for the PET surface in competition with water. This similarity 

suggests that adsorption of these pollutants onto PET in an aqueous environment may be less 

favoured compared to the first group. Benzene and chlorobenzene are in the last group, since their 

interaction energies with adsorption site I are only about –11 kcal mol–1, which is about two times 

weaker than the interaction of the water molecule. When comparing the interaction energies 

calculated in vacuum with those obtained using the PCM solvation model, a general weakening of 

the interaction energies is observed. For the first group, the interaction energies are reduced by 

approximately 5 kcal mol–1, for the second group by around 2 kcal mol–1, and for the third group 

by about 1.5 kcal mol–1. Notably, the interaction energy of water remains unchanged under the 

PCM model. Despite these differences, the overall trend in interaction strengths among the three 

groups remains consistent. 

The results for adsorption site II are shown in the Figure 4.9 b). This site is related to a 

benzene ring with a hydroxyl terminal group in its vicinity. The classification of model organic 
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pollutants to categories is not so evident as for adsorption site I. The average energies of 

phenylacetic acid, benzoic acid and benzamide, that exhibit the strongest adsorption, are about –

20 kcal mol–1, which is only about 3 kcal mol–1 stronger than the average interaction energies of 

aniline, phenol, and anisole. In contrast, triazine and chlorotriazine exhibit even weaker interaction 

energies, averaging around –12 kcal mol–1 which is comparable to the interaction energy of the 

water molecule. For benzene and chlorobenzene, the average interaction energies with adsorption 

site II are around –10 kcal mol–1.  

Turning attention to adsorption sites III and IV, which are located on two separate parts of 

the mPET surface “far” from the terminal groups. At these sites, hydrogen bonding can occur 

exclusively between the proton donor groups present in model pollutants and the oxygen atoms of 

ester groups in the mPET structure. Interaction energies of water molecules and the latter 

adsorption sites III and IV are about –9 kcal mol–1 for III and –11 kcal mol–1 respectively as 

illustrated in Figure 4.9 c) and d). A consistent trend is evident across both sites. That is, model 

pollutants carrying proton donor groups, such as phenylacetic acid, benzoic acid, benzamide, 

aniline and phenol, demonstrate average interaction energies that are approximately 6 kcal mol–1 

and 4 kcal mol–1 stronger than that of the water molecule at the adsorption sites III and IV, 

respectively. On the other hand, model pollutants lacking a proton donor group exhibit interaction 

energies that are either similar to or weaker than the interactions between the water molecule and 

these adsorption sites. In PCM, interaction energies change for 1.6 kcal mol–1 in average, the 

overall trend remains unaltered.  

This analysis shows the critical role of hydrogen bonding capabilities in determining 

adsorption behaviour at different sites on the mPET surface. It also highlights the relative 

importance of proton donor groups for enhancing interactions. These findings provide valuable 

insights into the factors governing pollutant adsorption on PET surfaces. 
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Figure 4.9. Interaction energies of the model pollutants and mPET on a) adsorption site I, b) adsorption 

site II, c) adsorption site III, and d) adsorption site IV calculated in vacuo and in implicit water as a 

solvent using IEFPCM model. Dashed lines represent the interaction energies of water molecules. 
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4.1.5.  Visual study of weak interactions 

Further analysis can be conducted through the visual study of weak interactions, allowing for the 

graphical representation of these interactions within chemical systems. This approach reveals the 

primary regions where interactions occur and distinguishes between different interaction types. 

These methods are extensively employed in studies of weak interactions due to their convenience 

and great universality. The non-covalent interaction (NCI) method proposed by Johnson et al. is 

based on reduced density gradient (RDG).[262] The basis of this method is briefly outlined here, as 

it serves as a foundation for other methods of this kind. RDG is a dimensionless quantity defined 

as follows:  

 RDG(𝑟) =
1

2(3𝜋2)1/3
×

|∇𝜌(𝑟)|

𝜌(𝑟)4/3
 (4.2) 

where 𝜌(𝑟) is electron density and ∇𝜌(𝑟) gradient of electron density. In regions far from the 

molecule, where the density decays to 0, RDG will have a very large positive value. On the 

opposite, in the regions of covalent bonds and weak interactions, RDG(𝑟) values will be very small, 

approaching zero. Weak interactions are formed at a low density values between two monomers. 

Upon dimer formation from two distinct monomers, RDG(𝑟) value quickly changes from very large 

value to near zero value. This can be seen as spikes in plots RDG(𝑟) versus 𝜌(𝑟). [262] To distinguish 

interaction types, the NCI method utilizes the sign of the second derivative of the Laplacian of the 

electron density (sign(𝜆2)). Bonding interactions are characterized by a negative sign(𝜆2) while 

nonbonding interactions are identified by a positive sign(𝜆2). More specifically, the Laplacian of 

the density (∇2𝜌) is often decomposed into three components along the principal axes of maximal 

variation, represented by three eigenvalues (𝜆1 ≤ 𝜆2 ≤ 𝜆3). In bonded interatomic regions, one 

eigenvalue is positive, and the other two are negative. For covalent interactions, the dominant 

negative contributions result in an overall negative Laplacian, whereas for weak non-covalent 

interactions, the dominant positive contributions lead to a positive Laplacian. Additionally, 

bonding weak interactions are associated with a negative 𝜆2, while nonbonding are identified by a 

positive 𝜆2 in the interatomic region. This characteristic allows for the differentiation of interaction 

types.[262] In weak interaction visualization analyses, it is common to employ a colour scheme to 

represent various interaction types, as illustrated in Figure 4.10. Plots of RDG(𝑟) versus 

sign(𝜆2)𝜌(𝑟) for water and water dimer are shown in Figure 4.11. where it can clearly be seen the 
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presence the “spike” in the plot that arises from the formation of weak attractive interactions 

between dimers.  

 

Figure 4.10. Colouring scheme for representation of weak interactions. 

 

 

Figure 4.11. Plots of the reduced density gradient (RDG) versus the electron density multiplied by the sign 

of the second Hessian eigenvalue sign(𝜆2)𝜌 for water and water dimer.  

 

Another widely used method for visualizing non-covalent interactions is the Independent 

Gradient Model (IGM) method, initially proposed by Lefebvre et al.[263] The original version of 

IGM is based on promolecular density, requiring only the system's geometry to visualize 

interactions. This approach makes the method highly efficient and computationally attractive. 

Compared to the RDG method, IGM method offers the advantage of distinguishing between intra-

fragment and inter-fragment interactions individually. In this method, interactions are using 𝛿𝑔 

function as compared to RDG function used in NCI method. 𝛿𝑔 function is defined as:  

 𝛿𝑔(𝑟) = 𝑔IGM(𝑟) − 𝑔(𝑟) (4.3) 

where 𝑔IGM(𝑟) is IGM type of density gradient defined as the sum of absolute values of atom in 

free-states, and 𝑔(𝑟) is the absolute sum of values of density gradients in their free state. That is, 

𝑔IGM(𝑟) and 𝑔(𝑟) are defined as follows: 
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 𝑔(𝑟) = |∑ ∇𝜌𝑖
free(𝑟)

𝑖

| (4.4) 

 𝑔IGM(𝑟) = ∑|∇𝜌𝑖
free(𝑟)|

𝑖

 
(4.5) 

In similar way, 𝛿𝑔inter(𝑟) function was defined only for intermolecular interaction in a way that:  

 𝛿𝑔inter(𝑟) = 𝑔IGM,inter(𝑟) − 𝑔inter(𝑟) (4.6) 

where 𝑔IGM,inter(𝑟) and 𝑔inter(𝑟)are defined as follows: 

 𝑔inter(𝑟) = |∑ ∑ ∇𝜌𝑖
free(𝑟)

𝑖∈𝐴𝐴

| (4.7) 

 𝑔IGM, inter(𝑟) = ∑ |∑ ∇𝜌𝑖
free(𝑟)

𝑖∈𝐴

|

𝐴

 (4.8) 

where 𝐴 loops over all fragments, and 𝑖 loops over all atoms in the fragment. And finally, 𝛿𝑔intra 

is defined as:  

 𝛿𝑔intra(𝑟) = 𝛿𝑔(𝑟) − 𝛿𝑔inter(𝑟) (4.9) 

In IGM analysis, sign(𝜆2)𝜌 function is mapped on 𝛿𝑔intra and 𝛿𝑔inter isosurface to reveal the 

regions and type of weak interactions. As already stated, IGM analysis is based only on density of 

atoms in their free state. Tian Lu and coworkers proposed a new version of IGM based on Hirshfeld 

partition of molecular density (IGMH).[238,239] The density from atom 𝑖 is this method is calculated 

as:  

 𝜌𝑖
Hirsh(𝑟) = 𝜌(𝑟)𝑤𝑖(𝑟) (4.10) 

where 𝜌(𝑟) is the actual density calculated by quantum mechanics or obtained experimentally, and 

𝑤𝑖(𝑟) is Hirshfeld weighting function of the atom 𝑖 defined as: 

 𝑤𝑖(𝑟) =
𝜌𝑖

free(𝑟)

∑ 𝜌𝑗
free(𝑟)𝑗

 (4.11) 

IGMH offers several advantages over IGM. Most notably, it is defined using the actual electron 

density, providing a more rigorous physical foundation. In many cases, the isosurface of 𝛿𝑔 

calculated by IGM can appear bulgy, and the associated colouring scheme may lead to incorrect 

conclusions. A detailed comparison of these two methods is provided in the original IGMH analysis 

paper. Overall, IGMH is generally recommended over IGM whenever possible. However, it is 

important to note that while IGMH relies on electron density calculations, IGM only depends on 
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the system's geometry. This characteristic makes IGM a more appealing option for very large 

systems where computational calculation are more demanding.  However, for the systems in hands, 

IGMH analysis was used to further analyse the interactions between model organic pollutants and 

mPET. 

The interaction energies of the model pollutants and mPET did not show the same trend for 

all four adsorption sites. In general, the energies were consistent with the strength and number of 

hydrogen-bonds the model pollutants could form. For instance, the interaction energies of 

benzamide, phenylacetic acid, and benzene were highly dependent on the adsorption site, while 

those of benzene and chlorobenzene showed less dependency. To illustrate this, scatter plots of 

weak interactions obtained from the IGMH analysis for benzamide and benzene with the four 

adsorption sites of mPET are presented in Figure 4.12. The scatter plot of benzamide interactions 

with the adsorption site I shows the large contribution of hydrogen bonding. However, that 

contribution is reduced on the adsorption sites II, III, and IV. This is consistent with the numerical 

results as the difference between the interaction energies of benzamide with adsorption site I, where 

the interactions were the strongest, and adsorption site III, where the interactions were the weakest, 

was about 16 kcal mol–1. In contrast, the scatter plots for benzene interactions are similar across all 

adsorption sites, as only van der Waals interactions are involved. This also suggests that π–π 

interactions, which could possibly form between the benzene ring of adsorption site II and the 

model pollutant, do not play an important role for the adsorption on mPET, as proposed by some 

experimental studies.[264,265] Additional scatter plots of weak interactions for all model pollutants 

with water molecules and the four adsorption sites are provided in the supporting materials (Figure 

A 3 – Figure A 5). 
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Figure 4.12. Scatter plots of IGMH analysis of weak interactions between benzamide and benzene, and the 

four adsorption sites of mPET. 

 

To check the qualitative validity of the results obtained for selected fractions of organic 

pollutants and to assess whether the observed trends hold true for more complex molecules, the 

interaction of a widely known organic pollutant, diclofenac, with mPET was investigated. 

Diclofenac was chosen due to its relevance as a common environmental contaminant and its 

structural complexity, which includes a larger, more flexible molecular framework compared to 

simpler model pollutants. The goal of this analysis was to compare the binding behavior of 

diclofenac with mPET to that of phenylacetic acid (PAA), a simpler structural fragment, to better 

understand how molecular size and flexibility influence adsorption interactions. 

The results presented in Figure 4.13 point out that for site I, the interaction energy for mPET 

with diclofenac is comparable to that of PAA. In contrast, at adsorption site II, the binding affinity 

of diclofenac with mPET markedly surpasses that of PAA, suggesting a notably stronger interaction 

at this particular site. This pronounced affinity is consistently observed across sites III and IV. The 

IGMH analysis, shown in the same figure, further substantiates these findings by revealing a 

complex interplay of attractive forces, van der Waals interactions, and steric repulsions at these 

sites. Specifically, sites II, III, and IV demonstrate a convergence of multiple non-covalent 

interactions that are integral to the stabilization of the mPET diclofenac complexes. The results of 

the IGMH analysis, paired with the interaction energy profiles, indicate that the strength of the 

binding should be linked to the structural attributes of the pollutants, namely, the size and flexibility 

of the molecules. Diclofenac, with its larger and more flexible molecular structure, appears to 
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establish a more extensive network of interactions compared to its PAA fragment. This 

comprehensive network is likely facilitated by diclofenac’s ability to adapt to the topography of 

the adsorption sites on mPET, forming multiple noncovalent bonds that reinforce the stability of 

the complex.  

 

Figure 4.13. (top) Interaction energies of mPET and phenylacetic acid compared to interaction energies of 

mPET and diclofenac calculated by M06-L/def2-SVP method. Yellow/blue columns correspond to 

interaction energies between mPET and (phenylacetic acid)/(diclofenac). (bottom) Independent gradient 

model (IGMH) analysis scatter plots of weak interactions between diclofenac and mPET at all four 

adsorption sites. In the usual colouring scheme, the blue colour represents attractive interactions, the green 

colour represents van der Waals interactions, and the red colour represent steric effects. 

 

 



4. Results and discussion 

Anamarija Pulitika   79 

4.1.6.  The effect of folded particle model 

Finally, it is meaningful to demonstrate, at this point, the difference between folded mPET models 

and oligomeric chains. This was revealed by comparing the interaction energies of the model 

pollutants with terephthalic acid (TA) in two configurations, corresponding to adsorption sites I 

and II, as shown in Figure 4.3. All the details of those interactions are shown in Figure A 1 and 

Figure A 3 in Appendix. As seen in the results depicted in Figure 4.14, the difference between the 

interaction energies of the model pollutants with mPET and TA was negative for all model 

pollutants, suggesting that they bind stronger on the surface of mPET than on TA. 

 

Figure 4.14. Difference between interaction energies of pollutants with mPET and terephthalic acid on 

adsorption sites I and II. 

 

This can be easily understood from the visual representations of the intermolecular 

interactions illustrated in Figure 4.15. As it is observed, the model pollutants can form multiple 

non-covalent interactions or hydrogen bonds with the neighbouring parts of mPET. This suggests 

that the adsorption mechanism of pollutants on micro and nano PET is different from the interaction 

with PET chains, which is consistent with other studies[132,133] and should be considered in future 

studies. The same trend is observed for the rest of the systems considered in this work as shown in 

Figure A 6 – Figure A 9 in Appendix. 
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Figure 4.15. Schematic representations of the interactions between adsorption site I of mPET and a) 

benzoic acid; b) benzamide; c) aniline; d) benzene, and between phenol and mPET on e) adsorption site I; 

f) adsorption site II; g) adsorption site III; h) adsorption site IV analysed by independent gradient model 

(IGMH) and visualised on 0.01 a.u. isosurface. In the usual colouring scheme, the blue colour represents 

attractive interactions, the green colour represents van der Waals interactions, and the red colour represent 

steric effects. 

 

4.1.7.  Synergistic and ageing effect 

It was interesting to go one step further and analyse how the adsorption of other pollutants on one 

site on mPET can affect the adsorption on another site. To assess this synergistic affect, the 

structure of mPET was first optimized with four phenols adsorbed on distant adsorption sites.  The 

optimization process was then repeated by gradually removing phenols and re-optimizing the 

structure at each step, resulting in a series of optimized structures containing varying numbers of 

phenols. The interaction energies between each phenol and mPET were calculated for 

configurations with one, two, and three additional phenols adsorbed on the surface of mPET. The 

results are shown in Figure 4.16. Upon analysing the obtained data, it becomes evident that the 

local interactions play a dominant role in determining the binding behaviour. Specifically, the 

interaction energy for a particular phenol remained largely unaffected by the presence of additional 

phenols on the mPET surface. This suggests that each phenol’s interaction with mPET is primarily 

determined by its immediate surroundings on the mPET surface, rather than distant phenol 

molecules. From a quantum chemistry standpoint, this observation indicates that the forces acting 

at the individual adsorption sites, such as localized electron density shifts via polarization and 

specific orbital interactions, are crucial in dictating the interaction energy. 
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Figure 4.16. Interaction energies of phenol and mPET with no other phenols adsorbed and with multiple 

phenols adsorbed on different parts of mPET surface. Highlighted phenol molecules correspond to ones 

whose interaction energies are calculated. 

 

Microplastics in the environment are susceptible to photooxidative ageing. Ageing of MP 

can lead to morphological changes on the surface of MP and the formation of new oxygen 

containing functional groups such as hydroxyls, carboxyls, and ketones, which consequently can 

affect adsorption capacity. Experimental studies from the literature have shown that the aged PET 

MP generally has a higher adsorption capacity for organic pollutants than the pristine PET MP.[100] 

In this thesis, aged PET is considered as a modified version of pristine mPET, with additional 

oxygen-containing groups introduced on each monomer. mPET–OH contains two additional 

hydroxyl groups on each benzene ring, mPET–COOH has an additional carboxyl group on the 

carbon atom of the ethylene group, and mPET=O includes an oxygen atom bonded through a 

double bond to the same carbon atom. 

To understand the effects of ageing on the adsorption interactions, interaction energies of 

phenol with pristine and aged mPETs were calculated at all four adsorption sites. The molecular 

structures of the modified monomers and the results of interaction energy calculation are shown in 

Figure 4.17. Some minor variations in the interaction energies of phenol with pristine and aged 

mPETs were observed, which can be attributed to the structural changes and repositioning of PET 

chains and phenol molecules during the optimization process. However, no significant differences 
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in the interaction energies are noted. Therefore, it can be assumed that the formation of oxygen-

containing functional groups does not influence the interactions between organic pollutants and 

PET microplastics.  

 

Figure 4.17. Interaction energies of phenol with pristine (mPET) and aged (mPET–OH, mPET–COOH, 

and mPET=O) PET model at M06-L level of theory and def2-SVP basis set. 

 

Ageing of PET MP could affect the adsorption capacity by providing more adsorption sites, since 

the aged particles generally have a larger specific surface area. Additionally, surface oxidation 

could lead to the formation of more adsorption sites able to form stronger interactions with organic 

pollutants through hydrogen bonding. As seen from our model, adsorption site I that contains –

COOH terminal group showed the strongest adsorption interactions with pollutants containing 

hydrogen bond donor and acceptor groups compared to other model adsorption sites.  

Finally, the interaction energies of twelve phenols adsorbed on the surface of mPET–

COOH were calculated. The structure is shown in Figure 4.18. The interaction energies of all 

twelve phenols ranged from –11.7 to –22.7 kcal mol–1, with an average interaction energy of –17.2 

kcal mol–1. This range of energies signifies a stable interaction across all twelve phenolic species 

with the mPET–COOH surface, suggesting that even small nanoparticles of aged mPET possess 

the capacity to adsorb a considerable number of organic pollutants effectively.  
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Figure 4.18. The structure of mPET–COOH with twelve phenols adsorbed optimized in gas phase at M06-

L level of theory and def2-SVP basis set. 
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4.2.  QSA/PR models of pollutants’ functional groups and PET 

MP interaction energies 

The results obtained from DFT provided a model of PET MP that is considered appropriate and 

offered valuable insights into the nature of its interactions with small model organic pollutants. As 

the next step in this thesis, the research was expanded to include a broader range of organic 

pollutants with diverse functional groups. This was done to develop mathematical models capable 

of predicting interaction energies between new, uncalculated functional groups and the PET model. 

More importantly, it aimed to provide a deeper understanding of the functional group properties 

that govern adsorption on mPET. To achieve this, the QSA/PR modelling method was employed. 

This approach correlates structural properties of molecules, represented by descriptors, with a 

response variable, which in this case was the interaction energy between mPET and the model 

organic pollutants. 

The set of model organic pollutants (hereafter referred to as m-OPs) was expanded to 

include 30 molecules, whose structures are shown in Figure 4.19. In QSA/PR modelling, a larger 

set of molecules is desirable to identify correlations between structural properties and the response 

variable. The chosen set is considered sufficiently large, as it includes a wide range of functional 

groups commonly found in organic pollutants, such as pesticides, pharmaceuticals and personal 

care products. This diversity enables the development of models with up to five variables, 

respecting the "rule of thumb" in QSPR modelling, which recommends maintaining a ratio greater 

than 1:5 between the number of variables (descriptors) and the number of molecules in the training 

set. It is assumed that using up to five variables is sufficient to single out the most significant 

structural properties of functional groups that guide adsorption. 
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Figure 4.19. Structures of 30 compounds representing common organic pollutants (m-OPs) to study the 

adsorption interactions with model PET surface. 
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4.2.1.  Preparing dataset for QSA/PR modelling 

The first step involved preparing a dataset of response variables (𝐸int) for the adsorption of all 30 

m-OPs onto the four adsorption sites identified on mPET. The calculations were carried out using 

the M06-L/def2-SVP method with density fitting and Grimme’s D3 empirical dispersion, as 

previously described. The optimized geometries of m-OPs adsorbed on adsorption sites I, II, III 

and IV on mPET surface are shown in Figure A 11 – Figure A 16 in Appendix, while the calculated 

interaction energies (𝐸int) are listed in Table 4.1. The interaction energies (𝐸int) on the adsorption 

site I are in range from –32.69 kcal mol–1 (calculated for benzamide adsorption) to –9.89 kcal mol–

1 (calculated for toluene adsorption) with an average interaction energy of –19.42 kcal mol–1 across 

all 30 m-OPs. The average interaction energies for the adsorption on sites II, III, and IV are –16.08 

kcal mol–1, –13.51 kcal mol–1 and –12.43 kcal mol–1 respectively. m-OPs that exhibited stronger 

adsorption at the sites (more negative interaction energies), such as benzamide (BAM), 

phenylsulfonic acid (PhSO₂OH), phenylsulfinic acid (PhSOOH), phenylphosphonic acid 

(PhPO(OH)₂), and benzenesulfonamide (BSAM), were capable of forming hydrogen bonds with 

the PET MPs, stabilizing the adsorption process. On the other hand, m-OPs incapable of forming 

hydrogen bonds, such as toluene (PhMe), benzene (Bz), and styrene (Sty), displayed the weakest 

adsorption affinities toward the PET MP model, as indicated by their higher interaction energy 

values. For instance, the lowest interaction energy for PhMe was –9.89 kcal mol–1, whereas for 

catechol (o-Ph(OH)2) was –25.03 kcal mol–1. These results align with earlier findings that m-OPs 

capable of forming hydrogen bonds exhibit stronger interactions with the mPET surface. In 

contrast, m-OPs lacking proton donor or acceptor groups demonstrate weaker interaction energies 

across all four adsorption sites on the mPET surface. 

The set of independent variables (descriptors) representing the structural properties of m-

OPs were calculated and filtered to exclude highly correlated pairs. In total, 2526 descriptors were 

used to develop predictive models of interactions energies in dependence on the structural features 

of the m-OPs. Before modelling, the descriptor matrix was normalized by dividing the values of 

descriptors by the highest absolute value in the training set for each descriptor. The normalization 

of matrix allows us to study the contribution of each descriptor to the target response in selected 

model. 
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Table 4.1. Interactions energies between 30 model organic pollutants (m-OPs) and model PET MPs surface 

on four adsorption sites (I, II, III and IV) used as a response variable for QSPR modelling (bold underlined 

values represent those used for the test sets, while others were part of training sets).  

Compound Abbreviation 
Eint / kcal mol–1 

I II III IV 

Benzene Bz –10.20 –9.44 –7.06 –8.28 

Toluene PhMe –9.89 –7.98 –9.01 –9.18 

Styrene Sty –10.34 –13.00 –11.28 –10.08 

Phenylacetylene PhA –12.29 –11.90 –11.18 –9.27 

Chlorobenzene PhCl –11.71 –10.91 –10.75 –8.88 

Bromobenzene PhBr –11.87 –11.08 –11.48 –8.97 

Fluorobenzene PhF –12.10 –10.40 –9.37 –8.75 

Phenol PhOH –21.30 –18.63 –16.59 –15.37 

Anisole PhOMe –19.21 –16.09 –9.32 –11.53 

Benzaldehyde PhCHO –20.34 –15.41 –10.63 –9.59 

Acetophenone AcPhO –21.24 –18.19 –11.49 –13.64 

Benzoic acid BA –29.43 –20.78 –17.58 –14.17 

Phenylacetic acid PAA –29.89 –17.25 –16.20 –13.98 

Aniline PhNH2 –20.18 –15.23 –12.95 –12.79 

N-Methylaniline NMA –17.28 –16.75 –11.81 –10.23 

N,N-Dimethylaniline DMA –13.24 –17.05 –13.83 –11.22 

Benzonitrile PhCN –19.47 –15.69 –13.60 –9.17 

Nitrobenzene PhNO2 –18.26 –15.58 –9.68 –12.31 

Benzamide BAM –32.69 –22.49 –16.27 –17.78 

Thiophenol PhSH –12.99 –15.35 –12.80 –12.25 

Phenylsulfenic acid PhSOH –19.41 –18.92 –13.71 –14.99 

Phenylsulfinic acid PhSOOH –30.18 –17.59 –19.43 –18.33 

Phenylsulfonic acid PhSO2OH –32.04 –25.21 –25.97 –18.49 

Benzenesulfonamide BSAM –22.99 –22.14 –15.74 –20.58 

Phenylphosphonic acid PhPO(OH)2 –29.62 –23.72 –26.66 –19.26 

o-xylene o-PhMe2 –11.57 –10.58 –11.29 –9.19 

Catechol o-Ph(OH)2 –25.03 –22.44 –17.70 –15.69 

o-Phenyldiamine o-Ph(NH2)2 –18.95 –18.71 –14.70 –12.39 

Triazine Tr –18.96 –11.88 –7.79 –7.79 

Chlorotriazine TrCl –20.05 –11.97 –9.35 –8.65 
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4.2.2.  Developing QSA/PR models 

Calculated interactions energies were further used as response variables to develop four QSA/PR 

models, each representing the adsorption on one adsorption site. For each model, m-OPs were first 

split to training (25 molecules) and test set (5 molecules) as indicated in Table 4.1. The training set 

was used to construct the QSA/PR models, while the test set was used to validate their predictive 

power. The splitting was carefully performed to ensure that the response variable values in the test 

set were evenly distributed and within the range of those in the training set. In accordance with the 

“rule of thumb,” a set of QSA/PR models containing between one and five variables (descriptors) 

were developed for each adsorption site. 

The model with the appropriate number of variables was then selected by comparing the 

𝑅2 values of models with 1 to 5 variables for each adsorption site. The plots of the coefficients of 

determination 𝑅2 versus the number of variables are shown in Figure 4.20. As can be seen, R2 

values for the training set increase with the addition of variables, as each new variable contribute 

to better description of chosen data set. However, this trend does not hold for the R2 values of the 

test set. Models with too many variables tend to be overfitted, reducing their predictive accuracy 

for the dataset. Therefore, to address this, the models with the highest R2 values of the test set were 

selected to describe the interaction energies of our m-OPs and PET MPs. Hence, the 3-variable 

models were chosen for adsorption sites I, III, and IV, while the 4-variable model was determined 

to be the best for adsorption site II. The statistical parameters of chosen models are shown in Table 

A 7 in Appendix. 
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Figure 4.20. The values of coefficients of determination (R2) of the training set and test of the QSPR 

models with 1-5 variables developed to predict the interaction energies of m-OPs with adsorption sites I, 

II, III and IV of PET MP. 

 

The selected models were further validated by methods of internal validation, including 

Leave Many Out (LMO) cross-validation and 𝑌-scrambling. LMO studies the robustness of the 

model by excluding a random sample of molecules and recalculating the model, after which it tests 

the performance by predicting the excluded molecules. The scatter graphs obtained by LMO 

technique are shown in Figure 4.21. For all four models, the Q2
LMO values are mainly close to 

Q2
LOO value and not widely disperse. The stability seen in the LMO cross-validation demonstrates 

that the models remain consistent when tested with different subsets of data. The results of 𝑌-

scrambling test are shown Figure 4.22. R2 and Q2 values of all selected models are significantly 

greater that R2 and Q2 values of the models after 𝑌-scrambling is performed. The clear difference 

in performance between the original models and the 𝑌-scrambled models confirms that the 
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observed correlations are not results from random correlation. Overall, these results confirm that 

the developed models are accurate and useful for predicting the adsorption behaviour of m-OPs on 

PET MPs.  

 

Figure 4.21. Scatter plot of Leave Many Out (LMO) technique performed to show the robustness of the 

selected QSPR models for the prediction of interaction energies between m-OPs and PET MP on 

adsorption sites I, II, III and IV. 
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Figure 4.22. Scatter plot of Y-scrambling validation method for the selected QSPR models for the prediction 

of interaction energies between m-OPs and PET MP on adsorption sites I, II, III and IV. 

 

The fitting criteria values and the values of internal and external validation criteria for the 

selected models are summarized Table A 8 in Appendix. The scatter plots of QSPR-predicted vs. 

DFT-calculated interaction energies using the selected models are shown in Figure 4.23. All the 

models accurately represent the given data, as evidenced by their high 𝑅2 values. The data points 

or data clusters are closely aligned with the diagonal line in all cases, further supporting the models' 

accuracy. To assess the applicability domain of the selected models and identify potential outliers, 

Williams plots were used, as shown in Figure 4.24. A Williams plot evaluates the reliability of a 

model's predictions by examining both structural (𝑋) and response variable (𝑌) outliers. The plot 

is constructed using the residuals (differences between predicted and actual values) and leverage 

(HAT) values, where leverage measures the influence of a molecule’s structural properties on the 
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model. Molecules with leverage values exceeding a critical threshold (h∗h^*h∗) are considered 

structural outliers (𝑋-outliers), while those with residuals outside ±3.0 σ are classified as response 

variable outliers (𝑌-outliers). For all four models, no 𝑌-outliers were identified, as all residuals fall 

within the ±3.0 σ range. However, in the Williams plot for Model IV, which predicts interaction 

energies between organic pollutants and adsorption site IV on the PET MP, the HAT value for 

catechol (o-Ph(OH)2) exceeds the critical threshold (h*), classifying it as an 𝑋-outlier. Catechol 

was part of the test set, but the HAT values for all other molecules remained below the limit. 

Overall, these results indicate that the selected models are accurate and reliable for 

predicting the interaction energies of organic pollutants on PET MPs, with only one structural 

outlier identified across all models. 

 

Figure 4.23. Calculated interaction energies and interaction energies predicted by QSPR Model I, Model 

II, Model III and Model IV build using training set (25 molecules) for the prediction of interaction 

energies of m-OPs with the adsorption sites I, II, III and IV on PET MP respectively. 
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Figure 4.24. Williams plots of QSPR Model I, Model II, Model III and Model IV for the prediction of 

interaction energies of m-OPs with the adsorption sites I, II, III and IV on PET MP respectively. 
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4.2.3.  Model descriptors 

The coefficients of descriptors used to build our selected Model I, Model II, Model III and Model 

IV with normalized training set that describe the interaction energies between m-OPs and PET MP 

on adsorption sites I, II, III and IV, respectively, are provided in Table 4.2 along with the 

corresponding statistical data. These descriptors were selected for their significance, as evidenced 

by their p-values, all of which are below the upper significance threshold of 0.05. This indicates 

that each descriptor contributes meaningfully to the model's predictive ability and is not included 

by chance.  

 

Table 4.2. Descriptive statistical data of the coefficients in in QSPR Model I, Model II, Model III and Model 

IV for the prediction of interaction energies of m-OPs with the adsorption sites I, II, III and IV respectively 

build using training sets (25 molecules) with normalized descriptors 

Model Variable Coefficient 
Standard 

deviation 

(+/–) 95% 

Confidence interval 
t–ratio p–value 

I 

Intercept –10.78 0.90 1.88 –11.92 0.00 

RDF050m –8.44 1.94 4.04 –4.35 <0.01 

F01[C–O] –4.29 1.51 3.14 –2.84 <0.01 

SAacc –12.98 1.98 4.11 –6.56 0.00 

II 

Intercept 11.79 3.70 7.72 3.19 <0.01 

SM15_AEA(ed) –39.90 4.36 9.09 –9.15 0.00 

Mor22s –3.28 0.71 1.48 –4.61 <0.01 

HATS4u 5.03 1.63 3.41 3.08 <0.01 

MLOGP2 8.22 0.92 1.92 8.93 0.00 

III 

Intercept –6.61 1.55 3.22 –4.26 <0.01 

TDB04v –5.40 2.22 4.61 –2.44 <0.01 

CATS2D_03_DL –6.81 1.00 2.08 –6.81 0.00 

F02[O–O] –8.81 1.50 3.11 –5.89 0.00 

IV 

Intercept –8.34 0.76 1.58 –10.98 0.00 

RDF050u –8.03 1.02 2.11 –7.90 0.00 

MLOGP2 3.28 1.10 2.29 2.98 <0.01 

SAdon –5.76 1.06 2.20 –5.46 0.00 

 

In addition to their significance, the descriptors were evaluated for multicollinearity. The 

cross-correlation coefficients between all pairs of descriptors in each model were calculated, and 

none exceeded the threshold of 0.7 (Rij>0.7) as shown in the cross-correlation matrix in Figure 

4.25. This confirms that the descriptors are not strongly correlated with one another and ensures 

that the models exhibit true linear behaviour. 
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Figure 4.25. Cross-correlation matrix of descriptor variables in QSPR Model I, Model II, Model III and 

Model IV for the prediction of interaction energies of m-OPs with the adsorption sites I, II, III and IV 

respectively. 

 

The descriptors used to build these models are listed in Table 4.3. The used descriptors fall 

into several categories: 2D atom pairs, molecular properties, 3D-MoRSE, RDF descriptors, 3D-

autocorrelation, CATS2D, edge adjacency indices, and GETAWAY. 2D atom pairs are very simple 

and straightforward descriptors that represent the number of times the exact atom pair occur at a 

certain topological distance. Molecular properties descriptors are derived from literature models. 

Others are calculated by more complex scheme. 3D-MoRSE (Molecular Representation of 

Structures based on Electronic diffraction) descriptors are 3D descriptors derived from scattering 

functions in electron diffraction studies.[266] There is a high range of 3D-MoRSE descriptors that 

are usually denoted as Morsw, where s denotes the number of signal and takes values from 1 to 32, 

and w denotes a weighting scheme. 3D-MoRSE descriptors can be unweighted (u) or weighted by 

either mass (m), van der Waals volume (v), Sanderson electronegativity (e), polarizability (p), 

ionization potential (i) or I-state (s). These descriptors have proved they are very valuable for 

QSA/PR. However, they are hardly interpretable.[267] RDF descriptors are based on the radial 



4. Results and discussion 

Anamarija Pulitika   96 

distribution function (RDF).[266] RDF can be interpreted as the probability distribution of finding 

an atom in a spherical volume of radius r.[268] RDF descriptors are denoted as RDFsw, where s 

represents the distance in 0.1 Å and it takes up values from 10 to 155 in five-unit steps, and w 

stands for the weighting scheme same as for 3D-MoRSE descriptors. 3D-autocorrelation 

descriptors calculate the Euclidian distance between atom pairs within a molecule up to a cut-off 

distance.[269] These descriptors are denoted as TDBsw, where s stands for oath length (lag) and w 

stands for weighting scheme. 3D-autocorrelation descriptors can be unweighted (u) or weighted by 

mass (m), van der Waals volume (v), Sanderson electronegativity (e), polarizability (p), ionization 

potential (i), I-state (s) or covalent radius (r). CATS2D descriptors are topological pharmacophore 

descriptors based on auto- and cross-correlation of pharmachophoric atom types.[270] CATS2D 

descriptors recognize 5 pharmacophoric types of atoms: H-bond donor (D), H-bond acceptor (A), 

positively charged (P), negatively charged (N), and lipophilic (L) atom. Every atom in the molecule 

can be assign to none, one or two pharmacophoric types. CATS2D descriptors count the number 

of atom pairs in molecule with a defined pharmacophoric types at a specific topological distance 

that is in the range from 0 to 9. Edge adjacency indices are topological descriptors derived from 

edge adjacency matrix that encode the connectivity between graph edges.[271] GETAWAY 

descriptors (GEometry, Topology and Atom-Weights AssemblY) correlate geometric information 

from the leverage matrix (also known as the Molecular Influence Matrix (MIM)), topological 

information from the molecular graph, and physicochemical information using various weighting 

schemes such as mass (m), van der Waals volume (v), Sanderson electronegativity (e), 

polarizability (p), ionization potential (i) and I-state (s).[272] GETAWAY descriptors are 

categorized into two groups: H-GETAWAY, which are calculated from MIM, and R-GATEWAY, 

which are calculated from the influence distance matrix that combines the elements of MIM with 

the elements of the geometry matrix.  
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Table 4.3. Definitions of descriptors used in QSPR Model I, Model II, Model III and Model IV for the 

prediction of interaction energies of m-OPs with the adsorption sites I, II, III and IV respectively. 

Model Descriptor name Descriptor definition Descriptor type 

I 

RDF050m Radial Distribution Function – 050 / weighted by mass RDF descriptors 

F01[C-O] Frequency of C – O at topological distance 1 2D Atom Pairs 

SAacc 
Surface area of acceptor atoms from P_VSA-like 

descriptors 

Molecular 

properties 

II 

SM15_AEA(ed) 
Spectral moment of order 15 from augmented edge 

adjacency matrix weighted by edge degree 

Edge adjacency 

indices 

Mor22s Signal 22 / weighted by I-state 
3D-MoRSE 

descriptors 

HATS4u Leverage-weighted autocorrelation of lag 4 / unweighted 
GETAWAY 

descriptors 

MLOGP2 
Squared Moriguchi octanol-water partition coefficient 

(logP2) 

Molecular 

properties 

III 

TDB04v 
3D Topological distance based descriptors – lag 4 

weighted by van der Waals volume 
3D autocorrelations 

CATS2D_03_DL CATS2D Donor-Lipophilic at lag 03 
Pharmacophore 

descriptors 

F02[O-O] Frequency of O – O at topological distance 2 2D Atom Pairs 

IV 

RDF050u Radial Distribution Function – 050 / unweighted RDF descriptors 

MLOGP2 
Squared Moriguchi octanol-water partition coefficient 

(logP2) 

Molecular 

properties 

SAdon 
Surface area of donor atoms from P_VSA-like 

descriptors 

Molecular 

properties 
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To further refine the analysis, the descriptors selected from the initial models developed 

with the training set of 25 molecules were used to construct new models based on the entire dataset 

of 30 m-OPs. This approach allows for a more comprehensive evaluation of the models by 

incorporating all available data, which can improve the accuracy and generalizability of the 

predictions. The performance of the newly developed models, using normalized descriptors, is 

presented in Figure 4.26. The corresponding plots of residuals, illustrating the differences between 

predicted and calculated interaction energies, are shown in Figure 4.27. Descriptive statistical data 

for the updated coefficients in these models is provided in Table 4.4. the corresponding models’ 

equations are presented below by equations (4.12) to (4.15): 

 𝐸int(I) = −7.190RDF050m − 4.155F01[C-O] − 13.603SAacc − 11.285 (4.12) 

 

 

𝐸int(II) = −39.471SM15_AEA(ed) − 3.261Mor22s + 4.839HATS4u

+ 8.064MLOGP2 + 11.572 
(4.13) 

 

 

𝐸int(III) = −5.811TDB04v − 6.773CATS2D_03_DL − 8.446F02[O-O]

− 6.562 
(4.14) 

 

 𝐸int(IV) = −8.152RDF050u + 2.690MLOGP2 − 5.593SAdon − 8.296 (4.15) 
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Figure 4.26. Calculated interaction energies and corresponding models’ equations of QSPR Model I, 

Model II, Model III and Model IV that predict interaction energies of m-OPs with the adsorption sites I, II, 

III and IV on PET MP respectively when applied on the entire set of data (30 molecules) with normalized 

descriptors. 
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Figure 4.27. Plot of residuals for QSPR Model I, Model II, Model III and Model IV that predict 

interaction energies of m-OPs with the adsorption sites I, II, III and IV on PET MP respectively when 

applied on the entire set of data (30 molecules) with normalized descriptors. 
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Table 4.4. Descriptive statistical data of the coefficients in in QSPR Model I, Model II, Model III and Model 

IV for the prediction of interaction energies of m-OPs with the adsorption sites I, II, III and IV respectively 

when applied on the entire set of data with normalized descriptors (30 molecules). 

Model Variable Coefficient Standard 

deviation 

(+/–) 95% 

Confidence interval 
t–ratio p–value 

I 

Intercept –11.29 0.78 1.61 –14.40 0.00 

RDF050m –7.19 1.73 3.55 –4.16 <0.01 

F01[C–O] –4.15 1.44 2.96 –2.89 <0.01 

SAacc –13.60 1.80 3.69 –7.57 0.00 

II 

Intercept 11.57 3.45 7.11 3.35 <0.01 

SM15_AEA(ed) –39.47 3.92 8.07 –10.08 0.00 

Mor22s –3.26 0.64 1.33 –5.06 0.00 

HATS4u 4.84 1.28 2.63 3.79 <0.01 

MLOGP2 8.06 0.79 1.64 10.15 0.00 

III 

Intercept –6.56 1.41 2.90 –4.66 <0.01 

TDB04v –5.81 2.03 4.17 –2.87 <0.01 

CATS2D_03_DL –6.77 0.94 1.93 –7.23 0.00 

F02[O–O] –8.45 1.40 2.88 –6.04 0.00 

IV 

Intercept –8.30 0.76 1.56 –10.95 0.00 

RDF050u –8.15 0.93 1.91 –8.77 0.00 

MLOGP2 2.69 1.00 2.05 2.70 <0.01 

SAdon –5.59 0.89 1.82 –6.32 0.00 

 

It should be noted that a more negative interaction energy (𝐸int) corresponds to a stronger 

adsorption. Therefore, the descriptors with a negative coefficient have a positive effect on the 

adsorption capacity. In the above models, only MLOGP2 (Model II and Model IV) and HATS4u 

(Model II) have a negative effect on adsorption capacities, while all other descriptors have a 

positive effect.  

The descriptors included in Model I that describe the interaction energies between m-OPs 

and PET-MP at adsorption site I are RDF050m, F01[C-O] and SAacc. As can be seen from 

equation (4.12), all three included descriptors have negative coefficients, meaning that all three 

synergistically contribute to the chosen response, i.e. the higher their values, the higher is 

adsorption. Due to the fact that descriptors are normalized, the coefficients allow us to estimate the 

extent of their contribution. Hence, the highest contribution is obtained by the SAacc descriptor, 

while other two contribute approx. 50% (RDF050m) and 25% (F01[C-O]) of its extent. The SAacc 

descriptor represents the surface area of the acceptor atoms.[273] The organic molecules 

characterized by higher values of the SAacc descriptor are more susceptible to accept electrons and 
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form hydrogen bonds. The values of the descriptors used in Model I for all 30 m-OPs selected are 

listed in Table A 9 in Appendix. The m-OPs that adsorb most strongly (with the lowest interaction 

energy) at adsorption site I have very high SAacc values. The m-OPs with oxygen-containing 

functional groups such as PhSO2OH, PhSOOH, BSAM and PhPO(OH)2, in which the oxygen is 

bound to sulphur and phosphorus, and BAM and BA, in which the oxygen is bound to carbon, have 

the highest SAacc values. PhMe, Bz, Sty, o-PhMe2, PhCl, PhBr, PhA, PhSH have an SAaac value 

of 0 and have the lowest interaction energies with adsorption site I. The descriptor F01[C-O] 

indicates the number of oxygen atoms directly bonded to the carbon atom. m-OPs with an oxygen-

containing functional group can form hydrogen bonds with the carboxyl group at adsorption site I. 

However, for some m-OPs such as PhSO2OH, PhSOOH, and PhPO(OH)2, the value of this 

descriptor is equal to 0, as their oxygen is not bonded directly to the carbon, but to a sulphur, 

phosphorus or nitrogen atom. Since they can also form hydrogen bonds, as the hydrogen is bonded 

to a strongly electronegative atom, this contributes significantly to their interaction energies. 

Hence, their strong ability to form hydrogen bonds between O atoms and PET MPs surface is 

compensated with the highest SAaac values, as mentioned above. RDF050m is the probability 

distribution for finding an atom in a spherical volume with a radius of 5 Å, weighted by mass. The 

descriptor RDF050m has a positive effect on adsorption, presumably due to the fact that the larger 

molecules (recognized over weighting scheme m, i.e. molecular mass) can interact with the 

neighbouring parts of PET MPs, which can further stabilize the complex and facilitate the 

adsorption process.  

Model II (eq. (4.13)) describes the relationship between the structural properties of selected 

m-OPs and their interaction energies with adsorption site II of PET MPs. In this case the 4-variable 

model which includes SM15_AEA(ed), Mor22s, HATS4u and MLOGP2 was determined to be 

the best-fitting model whose values are listed in Table A 10. First two mentioned descriptors have 

negative coefficients in eq. (4.13), providing synergistic effects to the chosen response, while later 

two possess positive confidents, thus antagonistically contributing to the predicted adsorption at 

site II. SM15_AEA(ed) makes by far the largest contribution, while the other three descriptors 

play a minor, but not negligible role in the adsorption prediction with contributions of 

approximately 20% for MLOGP2, 12% for HATS4u, 9% for Mor22s in relation to 

SM15_AEA(ed). SM15_AEA(ed) is a spectral moment of order 15 from augmented edge 

adjacency matrix weighted by edge degree. The edge adjacency matrix is a matrix derived from 
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the molecular graph. The matrix element is equal to 1 if the edges are adjacent and 0 if they are 

not. In an augmented edge adjacency matrix, the main diagonal contains non-zero elements, which 

in our case are weighted by edge degree.[274] SM15_AEA(ed) is a trace of the corresponding matrix 

raised to the power of 15. Molecules that contain more atoms and have a more branched structure 

have a higher value of the SM15_AEA(ed) descriptor than smaller linear or cyclic molecules. The 

larger m-OPs in terms of molecular weight are usually more branched and have a higher number 

of electronegative oxygen and/or nitrogen atoms. The m-OPs with higher values of 

SM15_AEA(ed) have more degrees of rotational freedom and their functional groups can interact 

with the nearby surface of PET MP, including the terminal hydroxyl group, which is located near 

adsorption site II and forms hydrogen bonds. Therefore, the high contribution of this descriptor in 

the model shows the importance of hydrogen bonding for the stabilization of the system. Following 

in terms of contribution to the selected response, specifically adsorption at site II, is MLOGP2, 

which represents a squared value of logP calculated by Moriguchi method.[275,276] The high 

MLOGP2 value indicate very lipophilic or very hydrophilic molecules. Although these two 

properties are polar opposites, since logP values for hydrophilic molecules are negative, while for 

lipophilic are positive, by squaring their values within MLOGP2 descriptor, both values become 

positive. In our case, all the molecules are lipophilic, therefore the positive coefficient of MLOGP2 

indicates the negative effect of lipophilicity on the adsorption on PET MP. HATS4u, as next 

contributing descriptor, does not have such straightforward correlation with ability to make 

hydrogen bonding as previously elaborated descriptors. Hence, HATS4u pertain to GETAWAY 

descriptors, whose interpretation is much more complicated and requires the consideration of three 

elements: weighting scheme, leverages, and the Dirac delta function. As HATS4u represents a 

leverage-weighted autocorrelation of lag 4 / unweighted, the weighting scheme is irrelevant. The 

descriptor with the fourth largest contribution in eq (4.13) is Mor22s, representing the signal 22 of 

3D-MoRSE weighted by I-state. As mentioned above, 3D-MoRSE descriptors are very useful and 

are often used as the main or one of the contributing descriptors of various models. However, their 

meaning is also hardly interpretable, without a straightforward correlation with the adsorption 

effect in our case. However, its weighting scheme I-state, i.e. electrotopological state atom (I-state) 

indices, is developed to better indicate the important topological features and molecular fragments 

mediating a particular response, combining electronic and topological characteristics of 
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atoms/molecules.[277,278] Hence, it is has been found as important structural feature to reflected 

adsorption of selected m-OPs via hydrogen bonding to PET MPs surface in our case. 

 In the Model III (eq. 4.14), CATS2D_03_DL, F02[O-O] and TDB04v descriptors are 

highly correlated with the end-point, i.e. (𝐸int) values, at site III. Their values for all 30 m-OPs are 

listed in Table A 11. CATS2D_03_DL is the number of hydrogen bond donor atom-lipophilic 

atom pair that are separated by three bonds. This descriptor directly reflects importance of 

hydrogen bonding in adsorption of m-OPs onto PET MPs; higher CATS2D_03_DL value results 

in stronger adsorption of m-OPs. F02[O-O] represents the number of oxygen-oxygen atom pair 

separated by two bonds. As explained above, m-OPs possessing O atom showed higher 

susceptibility to hydrogen bonding to PET MPs, while double O atoms in the molecule even 

increase such a probability. The TDB04v descriptor is another descriptor that refers to the size of 

the molecule. This descriptor calculates the Euclidean distances between atoms with a topological 

distance of 4 (separated by 4 bonds). In this case, the descriptor is also weighted by the van der 

Waals radius. Therefore, more linear molecules with larger surface areas have a higher value of the 

TDB04v descriptor than small molecules with curved or cyclic structures. The coefficient of this 

descriptor is negative, which means that the interaction energies between PET MPs and m-OPs are 

stronger for the m-OPs with a larger surface area. 

 Model IV describes the relationship between the structural features of m-OPs and their 

interaction energies with adsorption site IV at PET MP surface. The values of descriptors used in 

model IV are listed in Table A 12. The descriptor with the highest contribution in eq. (4.15) is 

RDF050u. The same descriptor has been shown as contributing one in Model II, but there was its 

analogue weighted by molecular mass (RDF050m). It is assumed that RDF050u contributes by 

indicating that m-OPs with higher values possess larger surfaces. Consequently, these m-OPs are 

able to engage in a greater number of weak interactions with the surface of PET MPs compared to 

smaller m-OPs. SAdon falls into the same category of P_VSA like descriptors as SAacc (shown 

to be the most contributing in Model I (eq (4.12)), while it represents surface of electron donor 

atoms. MLOGP2 negatively affects adsorption, the same as in in Model II (eq. (4.13)). The 

molecules with a higher MLOGP2 value (the one with more lipophilic character) will have a 

higher interaction energy with the adsorption site IV which has a negative effect on adsorption 

capacity.  
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In general, the main descriptors used in the above models to correlate structural features of 

m-OPs and their ability to adsorb at PET MPs surface, represented in our case as interaction 

energies between m-OPs and PET MPs surface, refer either to their ability to form hydrogen bonds 

or to the size of the m-OPs. The contribution of the descriptors differs from model to model, i.e. 

from adsorption site to adsorption site. For adsorption site I, the most important descriptor, SAacc, 

whose contribution is over 54%, is associated with the ability to form hydrogen bonds between the 

functional groups and the terminal carboxyl group of PET MPs. For adsorption site II, the most 

important descriptor is SM15_AEA(ed), which contributes over 70%. This descriptor is more 

related to the size and flexibility of the functional group. An examination of the structure of the m-

OPs (Figure 4.19) reveals that the larger, more flexible functional groups contain atoms capable of 

forming hydrogen bonds. Furthermore, an analysis of the optimized geometries of the m-OP/PET 

systems (Figure A 11 – Figure A 16) demonstrates that these functional groups can extend toward 

the terminal hydroxyl group of PET near adsorption site II, enabling the formation of hydrogen 

bonds. The models representing adsorption at sites III and IV do not have as dominant descriptors 

as model I and model II. Since these sites do not have a terminal hydroxyl or carboxyl group, 

adsorption is not only dominated by the ability to form a stronger bond but also depends on the 

size of the m-OPs and the ability to have many interactions, all of which contribute to the total 

interaction energy. 

The findings presented are of significant relevance to our understanding of the 

environmental fate and behaviour of PET micro- and nano-plastics. Ageing of PET leads to the 

formation of new carboxyl groups, i.e. by surface oxidation[279] of the macromolecule. As was 

demonstrated by the findings presented herein, these sites facilitate adsorption of m-OPs, especially 

those able to form hydrogen bonds such as PhSO2OH, PhSOOH, and PhPO(OH)2 used in this study. 

While hydrophobic interactions are commonly considered to be the most relevant[280,281] in the 

context of the environmental vectoring properties of the micro- and nano-plastics, this study 

underscores the importance of hydrogen bonding. In addition, it is important to note that hydrogen 

bonding is a much stronger type of a weak interaction than hydrophobic interactions. It is therefore 

more than likely that aged PET, but also other polymer particles that form carboxyl groups under 

the oxidative conditions of environmental ageing, exhibit enhanced adsorption of favourable 

aromatic moieties 
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4.3.  Adsorption of pollutants on PET MP in water  

Up to this point, this thesis has focused on the different functional groups and the nature of their 

interactions with PET MP. However, in the real environmental conditions, the adsorption of 

organic pollutants is influenced by numerous of factors, many of which cannot be captured by the 

so far computational approach. As previously discussed, the size of the adsorbate may play a role, 

as larger molecules can establish more interactions with MP. At the same time, they can also 

interact with the surrounding water molecules, meaning that the adsorption capacity of MP in the 

water for a certain adsorbate depends also on its affinity for water molecules. Keeping that in mind, 

the next step in this thesis involved the transition from small model organic molecules in vacuo to 

real water pollutants in the water surrounding.  

 One of the tools to computationally study the adsorption in more realistic environmental 

systems is molecular dynamics (MD).[140,282–284] The use of classical force field (FF) in MD allows 

the simulation of larger and more complex systems that include the explicit molecules of solvent 

while keeping the reasonable accuracy-cost ratio. Unlike ab initio calculations done so far, MD 

simulation captures the movement of atoms and calculates system’s properties by time-averaging, 

which is more similar to real experiments. Currently, MD simulations are widely accepted for 

studying adsorption interactions, particularly in biological systems, where well-developed FFs 

provide reliable.[285–287] However, applying MD to other systems is more challenging due to the 

lack of well-parameterized FFs. The use of MD to study MP adsorption is still in its early stages. 

A comprehensive 2024 review by Townstead[140] points out the lack of consensus among studies 

using MD for this purpose, particularly regarding the choice of force field, timescale, and initial 

system setup. Despite this limitation, there is a growing trend in using MD simulations to study 

adsorption on MP as it is a valuable tool for adsorption studies, cost-effective, and could reduce 

the need for experimental approaches. MD studies use purely theoretical or combined approach 

with experimental data where the adsorption capacity is generally correlated with the calculates 

interaction energies.[72,141,288,289] The interaction energy between two or more molecules is defined 

as the contribution to the total energy of the system caused by interactions between atoms or 

molecules.[290] In ab initio calculations, this is simply calculated as the difference between the total 

energy of the system and the individual energy of the molecules. However, in classical MD, the 

interactions between molecules are generally calculated form the distances between 
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atoms/molecules up until defined cutoff distance.[192,291] The total interaction energy is the sum of 

non-bonding energy terms that is, electrostatic (Coulombic) term and dispersion interactions term 

usually represented as Lennard-Jones (LJ) potential. The absolute values of these quantities might 

not have a true physical meaning; however, they can still provide valuable insights into the 

dominant effects governing the system.  

 

4.3.1.  Force field 

As previously defined in Section 2.3.4.1, force fields consist of a set of equations and associated 

parameters used to model a system's potential energy. While most force fields provide well-

established parameters for proteins and nucleic acids, making them widely applicable to the 

simulation of biochemical systems, the parametrization of other types of molecules presents 

significant challenges. This process can be both time-consuming and challenging, as the accuracy 

of a force field is highly dependent on the quality of its parameters. Fortunately, several software 

tools have been developed to assist and to provide parameters for molecular dynamics simulations 

of a broad range of molecules.[292–295] There is no single dominant FF used to study adsorption of 

MP. Some of the popular choices are COMPASS,[296] COMPAS II,[288,289] CHARMM,[297] 

GROMOS,[141] and OPLS-AA.[142,298] However, there is no clear explanation for selecting one over 

another, as the current state of art lacks the validation of FF for these types of studies. In this thesis, 

OPLS-AA force field was chosen, as it is one of the often used FF that is still actively developing 

but keeping in mind the need for future validation of generated results.   

Ther FF parameters for PET were obtained from the work of Sangkhawasi et al.[299] who 

used DL_FIELD 4.1. software to generate OPLS-AA parameters. This software analyses the 

molecular structure and determines the type of atoms for a given FF scheme.[300] DL_FIELD can 

produce force fields applicable to a wide range of models, including polymers, as demonstrated by 

Yong's work, where it was employed to generate force fields for simulating polyethylene and 

polystyrene nanoparticle models.[301] In this study, the PET molecule is represented as a trimer 

consisting of three segments: the Head (carboxyl terminal), the Body (repeating unit), and the Tail 

(hydroxyl terminal), as depicted in Figure 4.28.  
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Figure 4.28. Structure oh PET: Head (blue), Body (yellow; repeating unit) and Tail (red) and their atom 

labels in generated OPLS-AA force field.  

 

For the missing angles, i.e. unspecified in the provided parameters set: CA-CA-CA, CT-CT-OH, 

HAE-CT-OH, CT-OH-HO, and HAE-CT-HAE, parameters from corresponding angles in amino 

acids were applied. For unspecified dihedrals, including HO-OH-CO-CA, OES-CT-CT-OES, and 

OES-CT-CT-OH, parameters were obtained using LibParGen. LibParGen (Parameter Generator 

for Organic Ligands) is another software designed to provide OPLS-AA parameters for neutral 

organic molecules, and particularly useful to generate FF of small organic ligands.[292,302,303] Since 

periodic boundary conditions (PBC) are applied during MD simulations, it is necessary to ensure 

that the total charge of the system equals zero. Therefore, the partial charges of the atoms were 

slightly adjusted to ensure that the total charge of the system is neutral. In the same manner, the 

parameters of the OPLS-AA force field for pesticides were obtained from LibParGen. Finally, all 

the assigned OPLS-AA parameters and atom charges can be found in Table A 13 – Table A 16 in 

Appendix. 

 

4.3.2.  MD simulation of pesticides in water 

Five pesticides, known to be common organic pollutants in aquatic environment were chosen for 

MD simualtion, i.e. simazine (SMZ), atrazine (ATZ), diuron (DIU) alachlor (ALC) and isoproturon 

(IPT).[304] Their molecular structures are shown in Figure 4.29. 

 

Figure 4.29. Molecular structure of pesticides simazine (SMZ), atrazine (ATZ), diuron (DIU) alachlor 

(ALC) and isoproturon (IPT). 
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To gain a better understanding of pollutants’ affinity toward water molecules, the MD 

simulations were performed on systems containing one pollutant placed in the cubic box dimension 

9 nm × 9 nm × 9 nm solvated using SPC model of water. Before MD simulation, the systems were 

minimised and equilibrated to the pressure of 1 bar and the temperature of 300 K in NVT and NPT 

ensemble. The results of energy minimisation and equilibration of simazine are shown in Figure 

4.30, while the results for other pesticides are shown in Figure A 17. in Appendix. After this, the 

MD simulation was run for 10 ns as described in Materials and Methods section (Section 3.1.3. ). 

 

Figure 4.30. Energy minimization and equilibration of simazine in water in NVT and NPT ensemble. 

 

From the resulting MD trajectory, the short-range Lennard-Jones (LJ) and short-range 

Coulombic interaction energies were calculated between non-bonded atoms of the pollutant 

molecules and surrounding water molecules and the results are presented in Figure 4.31. The LJ 

potential corresponds to van der Waals interactions, which primarily govern interactions between 

uncharged species. In contrast, Coulombic energy arises from attractive or repulsive electrostatic 

forces between partially charged particles. More negative values of both interaction energies 
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indicate stronger interactions with water molecules. Therefore, the total interaction energy, that is 

the sum of two contributions, provides insights into the affinity of each pollutant for water. Charged 

molecules or those with polar functional groups tend to have dominant Coulombic interactions, 

whereas nonpolar molecules interact predominantly by LJ interactions. In this case, simazine and 

atrazine exhibit the most negative Coulombic interaction energies, but their LJ contributions are 

relatively weak, suggesting that electrostatic interactions predominantly govern their interactions 

with water molecules, likely due to the polar functional groups in their structures. For diuron and 

isoproturon, Coulombic interactions are less negative, while in the case of alachlor, the LJ and 

Coulombic contributions are nearly equal. This suggests that among these molecules, alachlor 

interacts with water more through van der Waals forces than electrostatic interactions. The balance 

between LJ and Coulombic interactions can be useful to predict molecule’s solubility, tendency to 

aggregate, and potential adsorption onto microplastics.  

 

 

Figure 4.31. Interaction energies of organic pollutants (pesticides) with water calculated from MD 

trajectories. 
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4.3.3.  Construction of PET models for MD simulations 

There are different way of setting up the initial system for MP adsorption found in the literature. 

The MP can be represented as a single chain with high degree of polymerisation that folds due to 

the intramolecular interactions,[289] or as an aggregate of smaller oligomeric chains.[72,141,142,297] In 

some studies, the aggregation of oligomeric chains occurs during the MD simulation of a system 

that includes water and pollutant molecules, which can become encapsulated in the process.[142,297] 

In others, the MP aggregate is preassembled, with water and pollutant molecules added later.[72,141] 

The later approach seems more in line with the events in realistic systems and therefore is used in 

this work.  

 To proceed to adsorption studies, first the two distinct PET model were prepared. Each 

model comprises 150 monomeric units. The first model was designed as a single, continuous 150-

mer chain, representing a more intact, unfragmented PET structure. In contrast, the second model 

was designed as an aggregate of thirty 5-mer chains, mimicking a more fragmented PET surface, 

which could arise from natural aging, degradation, or environmental processes. These two 

representations have the same number of monomeric units, but different number of terminal 

carboxyl and hydroxyl groups. While the single-chain model contains only one carboxyl terminal 

group and one hydroxyl terminal group, the aggregate model features 30 carboxyl and 30 hydroxyl 

terminal groups. This structural difference affects the availability of functional groups on the 

surface of PET MP that can potentially influence the adsorption mechanism of organic pollutants.  

 

Figure 4.32. Two models of PET microplastic used for MD simulation of pesticides adsorption to PET 

microplastic. The structure on the left is designed as one folded 150-mer chain, and the one on the right as 

an aggregate of 30 5-mer chains that represent fragmented PET microplastic.  
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 The spherical shape of the 150-mer chain was achieved through molecular dynamics (MD) 

simulation in the NVT ensemble. The system was initially simulated at 500 K, a temperature above 

the melting point of PET, for 100 ps to promote chain flexibility and rearrangement. Subsequently, 

the temperature was gradually reduced to 300 K, following the same parameters outlined in the 

Methods section (Section 3.1.3. ). The aggregate model was created by placing thirty 5-mer chains 

into a cubic simulation box. The dimensions of the box were optimized to 7.5 nm × 7.5 nm × 7.5 

nm in all three directions. A larger box size did not result in aggregation, while a smaller box caused 

the chains to connect with their periodic images due to insufficient spacing. The system was 

equilibrated in the NVT ensemble at successive temperatures of 500 K, 450 K, 400 K, and finally 

300 K. Both structures (the single 150-mer chain and the aggregate of thirty 5-mer chains) were 

equilibrated and finalized into spherical shapes with an approximate diameter of 4 nm (Figure 

4.32). 

 

4.3.4.  MD simulation of pesticides' adsorption on model PET 

To simulate the adsorption and calculate the interaction energies between pollutants and the two 

models of PET, each PET model was placed in a box dimensions 12 nm × 12 nm × 12 nm with one 

pollutant molecule in the vicinity. The systems were minimised and equilibrated before MD 

simulation was run. The interaction energies were calculated as the sum of non-bonded terms, i.e. 

Coulombic and Lennard-Jones potential. The results of the interaction energies between pollutants 

and both models of PET (aggregate that represent fragmented PET MP and one oligomeric chain 

that represent pristine PET MP) are presented in Figure 4.33. Note, that the more negative 

interaction energy is attributed to the stronger interactions.  

 The total interaction energy for the adsorption on PET model I is in range from –23.9 to –

15.0 kcal mol–1, and for the adsorption on PET model II from –26.0 to –18.6 kcal mol–1. In both 

cases, the strongest interactions (most negative energy) occurs with alachlor, while the weakest 

with atrazine. These values align with previously reported interaction energies from DFT studies, 

where the adsorption energy of diclofenac on PET varied from –33 to –22 kcal mol–1 depending 

on the adsorption site. However, it is important to note that those DFT values were calculated in a 

system without explicit water molecules, which could otherwise compete for interactions with both 

diclofenac and the PET surface. Feng et al.[141] studied the adsorption of benzo[a]pyrene on five 

types of MPs (PET, PS, PVC, PP, and PE) using MD simulations. In their study, the MP particle 
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was modelled as a surface onto which benzo[a]pyrene could adsorb. Their findings indicated that 

the strongest interactions occurred with PS, followed by PVC, PET, PE, and PP. The interaction 

energy for PET was approximately –25 kcal mol–1, which is of the same order of magnitude as the 

results obtained in this work. Interestingly, they also showed the adsorption on plastic surface is 

almost the twice stronger than the adsorption on single polymer chain. This difference is attributed 

to the greater number of hydrophobic interactions that can be realised with the surface compared 

to a single chain, a finding that also aligns with previous conclusions from DFT studies. Guo et 

al.[72] studied the sorption of sulfamethazine on different MP in a vacuum layer, neglecting the 

effect of water. Their results show higher values for the adsorption, specifically for PET, the 

interaction energy with sulfamethazine is –40.87 kcal mol–1. In a similar study from Liu et al.,[288] 

the interaction energy of PET MP with sulfamonomethoxine calculated in a system in vacuum is  

–125 kcal mol–1 which is one order of magnitude larger than results from the studies where explicit 

water molecules are included. However, when comparing their results for adsorption on PE, the 

results are much more consistent. The interaction energy of PE with benzo[a]pyrene, 

sulfamethazine, and sulfamonomethoxine was reported as –21 kcal mol–1, –27 kcal mol–1, and –34 

kcal mol–1, respectively. This significant difference in adsorption results for PET between studies 

that include explicit water molecules and those in vacuum can be attributed to PET’s molecular 

structure. PET contains oxygen atoms capable of forming hydrogen bonds and stronger 

electrostatic interactions with pollutants. However, these interactions can be disrupted in the 

presence of explicit water molecules. In contrast, PE lacks hydrogen-bonding sites and charged 

atoms, so the inclusion of explicit water molecules in the system has a much smaller effect on 

adsorption.  

 Further evidence for this can be found by examining the interaction energy terms. The 

results in Figure 4.33 show that for all the pesticides, electrostatic (Coulombic) interactions were 

significantly weaker when compared to van der Waals (LJ) interactions, which indicates dispersion 

forces are the dominant factor in pesticides-PET MP interactions in water environment. These 

results are in contrast with the previous ones from DFT calculations in continuum model that does 

not take into account explicit water molecules and emphasises the importance of hydrogen bonds 

in the adsorption mechanism on PET MP. This suggest DFT calculations in continuum model, 

while as can give the information about the nature of interactions between two interacting systems, 
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cannot accurately predict the adsorption capacity as it neglects the large influence of surrounding 

environmental factors, in this case, interactions with explicit water molecules.  

 

Figure 4.33. Interaction energies between pesticides and PET model I, and PET model II (fragmented 

model) calculated from MD trajectories. 

 

Finally, a comparison can be made between the adsorption of pesticides on PET model I 

and PET model II. It is evident that PET model II exhibits stronger interactions with all pesticides 

compared to PET model I. The difference in total interaction energy results from an increase in 

both Coulombic and LJ interactions. The stronger Coulombic interactions can be attributed to the 

higher number of terminal carboxyl and hydroxyl groups in PET model II, which provide additional 

hydrogen bonding and electrostatic interaction sites for pesticides. Despite the increase in 

Coulombic interactions, LJ forces remain the dominant contribution, suggesting that hydrophobic 

interactions still play a crucial role in adsorption.  

The equilibrium structures of atrazine and simazine adsorption are shown in Figure 4.34 

and the equilibrium structures of diuron, alachlor and isoproturon adsorption are shown in Figure 

4.35. From the careful examination of figures, it can be observed that the pesticides can penetrate 

more deeply into the surface of PET model II compared to PET model I. This allows for increased 

number of interaction contacts that can be realised between PET model and pesticide, resulting in 

stronger adsorption. This can be linked to the greater flexibility of PET chains and a less compact 

structure, which is more adaptable and more easily modified, thereby stabilizing the adsorption 

process. A similar effect was observed in a study from Liu et al.[142] where MD was used to  
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simulate the adsorption of aromatic hydrocarbons on PE and PS microplastic water. Their findings 

showed that hydrocarbons continuously modified the structure of the microplastic during sorption, 

further supporting the influence of polymer flexibility on adsorption mechanism.  

Another important factor to be considered when running a simulation is the time-scale.[140] 

The processes involving penetration of molecules and interaction with flexible chains of polymer 

in water may need more time to reach equilibrium state than process involving adsorption on more 

rigid plastic surface or in vacuum. As demonstrated in a study by Liu et al.,[142] the interaction 

energies reached equilibrium after 1 to 2 ns, while the simulation was run for 50 ns. In a study from 

Feng et al.,[141] the equilibrium was achieved even later, and the simulation was run for 100 ns. 

However,  in studies from Guo et al. and Liu et al. in vacuum, the simulations were run only for 

0.5 ns.[72,288] 

 

Figure 4.34. Structures of alachlor adsorption on PET model I and PET model II.  
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Figure 4.35. Structures of diuron, alachlor and isoproturon adsorption on PET model I and PET model II.   
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4.3.5.   Adsorption capacities 

The adsorption capacity of MP reported in the literature varies depending on the study. This is 

caused by the numerous of factors affect the MP adsorption capacity and different methodologies 

used to study the adsorption. The study by Miranda et al.[305] reports significantly lower MP 

capacities for organic pollutants compared to similar research. Both pristine and aged PET MP did 

not show any significant adsorption affinity for most organic pollutants, including diuron and 

alachlor. On the other hand, a particularly high affinity was observed for pentachlorophenol, 

especially after the aging treatment. These findings align with those of Godoy et al.,[306] who 

reported low adsorption affinity of PET for organic molecules such as diuron and atrazine but a 

high affinity for phenol. However, both studies lack an explanation for the increased adsorption 

capacity of pentachlorophenol or phenol. Overall, research suggests that the aging process 

enhances the sorption capacity of MP. Titov et al.[307] investigated the sorption of micropollutants 

present in European river water on PET, PVC, and PS. Their results indicated the aging state of 

MP particles is the most critical factor influencing sorption, followed by polymer type. 

Considering the variation between reported results, this study aimed to estimate the 

difference in the PET MP’s adsorption capacity for various pesticides. To achieve this, the 

adsorption capacity of a very high relative concentration of PET MP was measured. Details of PET 

MP characterisation can be found in Appendix B. The experimental adsorption capacity of both 

pristine and thermally aged PET MP was measured for diuron, alachlor and isoproturon. Simazine 

and atrazine were excluded from the analysis due to their participation during the experiments. The 

results, presented in Table 4.5, indicate that thermally aged PET MP exhibit a higher adsorption 

capacity for all tested pesticides. Adsorption increased by 132%, 60%, and 92% for diuron, 

alachlor, and isoproturon, respectively, compared to pristine PET MP demonstrating that aging 

enhances the adsorption capacity of microplastics.  

The adsorption affinity of both pristine and thermally aged PET was the highest for 

alachlor, followed by diuron, with the lowest observed for isoproturon. When these results are 

compared with the previously discussed results from the MD simulations, it is obvious that the 

average interaction energies of the pesticides adsorption followed the same trend for the adsorption 

on PET model I, showing alachlor exhibit the strongest interactions with PET, followed by diuron 

and isoproturon. However, for PET model II, the MD simulation results did not align with 

experimental findings, as they indicated the lowest adsorption for diuron instead of isoproturon.  
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Table 4.5. Equilibrium adsorption capacity (𝑞) and standard deviation (σ) for the adsorption of diuron, 

isoproturon and alachlor (initial concentration 50 μmol dm-3, 1 mL) on pristine and thermally aged PET MP 

(100–200 µm; 100 mg) at the temperature of 25 °C and rotation speed of 120 rpm. 

Pollutant 
Pristine PET MP Thermally aged PET MP 

q / mg g–1 σ / mg g–1 q / mg g–1 σ / mg g–1 

Diuron 0.0094 0.0004 0.0218 0.0012 

Alachlor 0.0250 0.0038 0.0399 0.0013 

Isoproturon 0.0037 0.0004 0.0071 0.0004 

 

A combined MD and experimental study from Leng et al.[308] on the adsorption of 17-β estradiol 

on MP, demonstrated a correlation between interaction energies from MD simulations and 

experimental adsorption capacities. In that case, adsorption capacity was highest for PE (q = 0.642 

mg g–1; Eint = –26.06 kcal mol–1), followed by PP (q = 0.545 mg g–1; Eint = –25.19 kcal mol–1), and 

PS (q = 0.415 mg g–1; Eint = –23.79 kcal mol–1). Similarly, a study by Guo et al.[72] confirmed 

agreement between adsorption capacities and interaction energies from MD simulations. However, 

this alignment is not universal. For example, research by Chen et al.[139] on the adsorption of three 

antibiotics and by Li et al.[136] on the adsorption of three pesticides on PE MP found that trends in 

adsorption capacities did not strongly align with the trend observed in calculated interaction 

energies. Looking back at the results from this study, MD simulations further indicated that 

adsorption is stronger on PET model II, which represents fragmented, aged PET MP, compared to 

PET model I, representing unfragmented, pristine MP which agrees with the experimental results. 

Although, MD results alone cannot quantitatively explain the increase in adsorption capacities after 

ageing. Despite this, interaction energies calculated by MD can still reasonably explain the trends 

observed in adsorption capacities. Difference in results might come from various sources, including 

error in experimental data, and calculated interaction energy.  

MD has shown its potential as a valuable tool for understanding adsorption mechanisms. 

To better capture MP adsorption phenomena, advancing simulation methodologies are encouraged, 

including testing of different force fields and refining the representation of PET surfaces based on 

experimental findings. Developing more realistic PET models, incorporating surface 

heterogeneity, polymer flexibility, and degradation effects, could improve the agreement between 

simulations and experimental adsorption capacities. Additionally, longer simulation timescales, 

improved solvent models, and the inclusion of other effects, as the competitive adsorbents and ions, 

should be explored to gain a better understanding of pollutant adsorption onto MP in environment.  



5. Conclusion 

Anamarija Pulitika   119 

5.  Conclusion 

This research integrated computational chemistry methods into the study of MP adsorption 

mechanisms to reveal the nature of interactions between organic pollutants and PET MP. 

Additionally, simulation approaches were developed to better understand experimentally obtained 

results and to enable the prediction of adsorption behaviour for other pollutants. 

DFT methods were used to analyse the specific interactions between PET MP and ten 

functional groups commonly found in organic pollutants in water. These functional groups were 

represented by small molecules containing either a single benzene or pyridine ring (m-OP). To 

ensure both computational efficiency and accuracy, the performance of multiple DFT functionals 

was evaluated against the MP2 method. Based on this comparison, the M06-L functional was 

selected, as it produced results most comparable to MP2 while being a pure functional, making it 

computationally less demanding than hybrid functionals. The DFT study confirmed that the 

adsorption interactions between organic pollutants and PET MP are weak physical interactions. 

The strongest interactions were observed between m-OP molecules containing proton donor and 

proton acceptor groups, specifically, phenylacetic acid, benzoic acid, and benzamide, and 

adsorption site I of the PET model, which featured a terminal carboxyl group. The differences in 

interaction energies among m-OP molecules were primarily attributed to the number of hydrogen 

bonds they could form with PET. In most cases, the interaction energy depended on the adsorption 

site of PET, with the exception of benzene and chlorobenzene, which exhibited the weakest 

adsorption across all adsorption sites. This weaker adsorption was attributed to the absence of 

partially charged groups, and the interactions only through van der Waals forces. 

making these molecules reliant solely on weak van der Waals interactions. 

The study was further expanded to 30 m-OPs to capture more variety in functional groups 

and to be able to create mathematical models that correlate calculate interaction energies with 

structural properties of m-OPs using QSA/PR. The results for added functional groups were in 

accordance with previously reported ones. The interaction energies were the strongest for 

benzamide, benzoic acid, phenylacetic acid, phenylphosphonic acid, phenylsulfonic acid, and 

phenylsulfinic acid, all of which can form multiple hydrogen bonds with PET MP. For m-COPs 

whose functional group cannot form hydrogen bonds, such as benzene, toluene and styrene, the 

interaction with PET MPs was similar for all four adsorption sites. Four QSA/PR models were 
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developed correlating the interaction energies between m-COPs and PET MPs at four adsorption 

sites. Descriptors of m-OP used in models provide further insight into their key structural features 

for adsorption to PET MPs. For adsorption site I (terminal carboxyl group), the most important 

descriptor was SAacc, which refers to the surface area of the electron acceptor atoms, which can 

be interpreted as the ability to form hydrogen bonds. For adsorption site II (terminal hydroxyl 

group), the most important descriptor is SM15_AEA(ed), which refers to the size and flexibility 

of the functional groups. Considering the position of the terminal hydroxyl group at adsorption site 

II and the final optimised geometries of the binary PET MPs and m-COP systems, this descriptor 

is important due to the ability of larger and more flexible functional groups to interact with the 

terminal hydroxyl group of PET MPs through hydrogen bonding. Adsorption at sites III and IV 

(surface of PET) is not much facilitated by strong hydrogen bonds, but rather by the size of the 

functional group, which is able to form many weaker interactions with the surrounding surface of 

PET MPs. 

In the next phase, the study transitioned from small organic molecules in a continuum 

model to real pollutants in an aqueous environment. The MD simulations aimed to clarify the 

dynamics of adsorptions of atrazine, simazine, diuron, alachlor and isoproturon on PET MP model 

including the explicit water molecules that could potentially compete for adsorption sites on both 

PET MP and pollutants. Two distinct PET models were constructed: one representing an 

unfragmented microplastic (PET model I) and the other simulating aged and fragmented PET MP 

(PET model II). The adsorption results for the selected pesticides revealed that van der Waals 

interactions contributed more significantly to the total interaction energy than electrostatic 

interactions. Additionally, adsorption onto the fragmented PET model II was stronger for all 

pesticides compared to PET model I. This increased adsorption was attributed to the greater 

flexibility and less compact structure of model II, which allowed for more structural modifications 

and a higher number of interaction contacts with the pesticides, thereby enhancing the total 

interaction energy. MD simulations with PET model I showed the strongest interactions for 

alachlor, followed by diuron and isoproturon, which aligns with the trend in adsorption capacities 

for pristine PET. However, in simulations with PET model II, the interaction energy followed a 

different order: alachlor, isoproturon, and diuron. This order did not match experimentally obtained 

results for adsorption on thermally aged PET MP, which indicated that alachlor had the highest 

adsorption capacity, followed by diuron and then isoproturon. Nevertheless, adsorption on PET 
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model II was consistently higher than on PET model I for all tested pesticides. This trend agreed 

with experimental findings, which demonstrated that pesticide adsorption capacity increased after 

the aging treatment of PET MP. However, the exact increase in adsorption capacity could not be 

quantitatively explained through MD simulations. Overall, MD simulations proved to be a valuable 

tool for understanding adsorption mechanisms, highlighting their potential for further development 

in this field to better capture the adsorption behaviour of MP in water environment.  
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Appendices 

Appendix A 

 

Figure A 1. Differences in interaction energies between the model pollutants and terephthalic acid in 

configuration TA I calculated by MP2/def2-TZVP method and various DFT methods with def2-SVP basis 

set. 
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Figure A 2. Differences in interaction energies between the model pollutants and terephthalic acid in 

configuration TA II calculated by MP2/def2-TZVP method and various DFT methods with def2-SVP 

basis set. 
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Table A 1. Interaction energies of TA and organic pollutants in a system where the functional group of pollutant interacts with the carboxyl group of 

terephthalic acid (TA I) calculated by MP2/def2-TZVP method and various DFT methods with def2-SVP basis set. 

Pollutant 

Eint(TA I)  / kcal mol–1 

def2–SVP def2–TZVP def2–TZVPP def2–TZVP 

B3LYP M05 M05–2X M06 M06–2X M06–HF M06–L MP2 MP2 MP2 M06–L 

Phenylacetic acid –24.28 –21.72 –24.45 –21.98 –23.38 –32.70 –21.22 –16.93 –18.48 –19.04 –21.66 

Benzoic acid –24.44 –21.80 –24.66 –22.09 –23.67 –32.93 –21.36 –17.05 –18.61 –19.17 –21.86 

Benzamide –22.07 –20.06 –21.31 –20.29 –20.83 –25.99 –19.54 –16.04 –17.57 –18.09 –20.15 

Aniline –13.75 –12.19 –13.29 –12.61 –13.40 –16.49 –11.70 –10.38 –11.86 –12.07 –11.91 

Phenol –12.71 –11.85 –11.93 –12.06 –11.87 –14.39 –11.38 –8.69 –10.19 –10.72 –11.80 

Anisole –10.63 –9.92 –9.79 –9.46 –9.67 –11.69 –8.55 –7.54 –8.14 –8.45 –8.45 

Triazine –13.20 –12.22 –12.31 –11.98 –12.32 –14.81 –11.08 –9.41 –10.25 –10.52 –11.12 

Chlorotriazine –12.83 –11.86 –11.67 –11.57 –11.70 –13.70 –10.61 –9.02 –9.90 –10.18 –10.73 

Benzene –5.01 –4.80 –5.28 –5.04 –5.16 –6.33 –4.23 –2.75 –4.99 –5.20 –4.62 

Chlorobenzene –6.20 –6.03 –5.48 –5.33 –5.43 –5.97 –4.54 –3.71 –4.38 –4.69 –4.89 
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Table A 2. Interaction energies of TA and organic pollutants in a system where the aromatic ring of pollutant is placed on top of the aromatic ring of 

terephthalic acid (TA II) calculated by MP2/def2-TZVP method and various DFT methods with def2-SVP basis set. 

Pollutant 

Eint(TA II)  / kcal mol–1  

def2–SVP def2–TZVP def2–TZVPP def2–TZVP 

B3LYP M05 M05–2X M06 M06–2X M06–HF M06–L MP2 MP2 MP2 M06–L 

Phenylacetic acid –6.35 –6.07 –6.23 –7.57 –6.99 –7.25 –6.88 –3.45 –8.01 –8.32 –6.53 

Benzoic acid –10.89 –10.55 –10.69 –12.61 –11.87 –12.33 –11.20 –5.62 –11.04 –11.34 –11.06 

Benzamide –13.87 –12.82 –13.54 –15.10 –14.31 –17.76 –13.61 –9.15 –13.72 –14.12 –13.51 

Aniline –6.56 –5.92 –6.33 –7.81 –7.06 –7.45 –7.18 –3.16 –7.97 –8.31 –6.96 

Phenol –7.76 –7.42 –7.52 –8.77 –8.52 –9.02 –7.71 –4.46 –9.03 –9.32 –7.38 

Anisole –7.34 –6.81 –7.35 –9.20 –8.28 –8.86 –8.86 –4.14 –9.18 –9.56 –8.82 

Triazine –5.39 –5.24 –5.22 –6.07 –5.82 –5.96 –4.82 –2.48 –5.93 –6.05 –4.52 

Chlorotriazine –5.87 –5.48 –5.51 –6.71 –6.48 –6.95 –5.98 –2.92 –7.27 –7.40 –5.66 

Benzene –4.23 –4.30 –4.45 –5.65 –4.95 –5.30 –4.95 –2.22 –6.01 –6.25 –4.56 

Chlorobenzene –5.50 –5.20 –5.35 –6.65 –6.09 –6.55 –6.03 –2.89 –7.59 –7.82 –5.75 

 

  



Appendices 

Anamarija Pulitika         127 

Table A 3. The difference between MP2/ def2-TZVP and DFT/ def2-SVP interaction energies shown in Table A 1. calculated by MP2/def2-TZVP 

method and various DFT methods with def2-SVP basis set. 

Pollutant 

ΔEint(TA I)  / kcal mol–1 

def2–SVP def2–TZVPP def2–TZVP 

B3LYP M05 M05–2X M06 M06–2X M06–HF M06–L MP2 MP2 M06–L 

Phenylacetic acid 5.80 3.24 5.97 3.50 4.90 14.22 2.74 –1.55 0.56 3.18 

Benzoic acid 5.83 3.19 6.05 3.48 5.06 14.32 2.75 –1.56 0.56 3.25 

Benzamide 4.50 2.49 3.74 2.72 3.26 8.42 1.97 –1.53 0.52 2.58 

Aniline 1.89 0.33 1.43 0.75 1.54 4.63 –0.16 –1.48 0.21 0.05 

Phenol 2.52 1.66 1.74 1.87 1.68 4.20 1.19 –1.50 0.53 1.61 

Anisole 2.49 1.78 1.65 1.32 1.53 3.55 0.41 –0.60 0.31 0.31 

Triazine 2.95 1.97 2.06 1.73 2.07 4.56 0.83 –0.84 0.27 0.87 

Chlorotriazine 2.93 1.96 1.77 1.67 1.80 3.80 0.71 –0.88 0.28 0.83 

Benzene 0.02 –0.19 0.29 0.05 0.17 1.34 –0.76 –2.24 0.21 –0.37 

Chlorobenzene 1.82 1.65 1.10 0.95 1.05 1.59 0.16 –0.67 0.31 0.51 

MAE 3.08 1.85 2.58 1.80 2.31 6.06 1.17 1.29 0.38 1.36 

RMSE 12.46 4.34 10.27 4.42 7.64 56.94 2.24 1.89 0.16 3.19 
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Table A 4. The difference between MP2/ def2-TZVP and DFT/ def2-SVP  interaction energies shown in Table S2. 

Pollutant 

ΔEint(TA II)  / kcal mol–1 

def2–SVP def2–TZVPP def2–TZVP 

B3LYP M05 M05–2X M06 M06–2X M06–HF M06–L MP2 MP2 M06–L 

Phenylacetic acid –1.66 –1.94 –1.78 –0.44 –1.02 –0.76 –1.13 –4.56 0.31 –1.48 

Benzoic acid –0.15 –0.49 –0.35 1.57 0.83 1.29 0.16 –5.42 0.30 0.02 

Benzamide 0.15 –0.90 –0.18 1.38 0.59 4.04 –0.11 –4.57 0.40 –0.21 

Aniline –1.41 –2.05 –1.64 –0.16 –0.91 –0.52 –0.79 –4.81 0.34 –1.01 

Phenol –1.27 –1.61 –1.51 –0.26 –0.51 –0.01 –1.32 –4.57 0.29 –1.65 

Anisole –1.84 –2.37 –1.83 0.02 –0.90 –0.32 –0.32 –5.04 0.38 –0.36 

Triazine –0.54 –0.69 –0.71 0.14 –0.11 0.03 –1.11 –3.45 0.12 –1.41 

Chlorotriazine –1.40 –1.79 –1.76 –0.56 –0.79 –0.32 –1.29 –4.35 0.13 –1.61 

Benzene –1.78 –1.71 –1.56 –0.36 –1.06 –0.71 –1.06 –3.79 0.24 –1.45 

Chlorobenzene –2.09 –2.39 –2.24 –0.94 –1.50 –1.04 –1.56 –4.70 0.23 –1.84 

MAE 1.23 1.59 1.36 0.58 0.82 0.90 0.89 4.53 0.27 1.10 

RMSE 1.96 2.95 2.27 0.60 0.80 2.06 1.02 20.78 0.08 1.62 

  



Appendices 

Anamarija Pulitika         129 

Table A 5. The dependence of basis set superposition error (BSSE) for the interaction of organic pollutants and TA calculated by MP2/def2-TZVP 

method and various DFT methods with def2-SVP basis set. 

Pollutant 
BSSE (TA I) / % BSSE (TA II) / % 

def2–SVP def2–TZVP def2–TZVPP def2–SVP def2–TZVP def2–TZVPP 

Phenylacetic acid 36.5% 8.3% 9.1% 71.3% 30.8% 28.0% 

Benzoic acid 32.3% 8.2% 8.9% 66.6% 28.1% 25.9% 

Benzamide 27.6% 8.0% 8.6% 52.3% 21.2% 19.7% 

Aniline 36.5% 13.8% 13.1% 74.7% 31.9% 28.7% 

Phenol 43.3% 17.0% 15.4% 67.5% 29.3% 26.3% 

Anisole 38.2% 12.6% 12.7% 70.2% 29.8% 27.0% 

Triazine 32.3% 10.0% 10.2% 71.6% 29.0% 27.4% 

Chlorotriazine 33.6% 10.6% 10.9% 73.2% 29.2% 27.8% 

Benzene 58.1% 22.2% 19.4% 74.6% 30.8% 27.5% 

Chlorobenzene 33.6% 16.9% 16.5% 73.3% 29.5% 27.2% 
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Table A 6. X, Y, Z coordinates of optimized geometry of polyethylene terephthalate model (mPET). 

ž 
Coordinates 

Atom 
Coordinates 

Atom 
Coordinates 

x y z x y z x y z 

O 9.250543 1.004598 –2.661174 C –1.301652 5.019308 –3.088444 H 1.535956 –6.776552 1.609066 

C 7.95902 0.613098 –3.046418 C –1.383518 5.223525 –1.595832 H 5.260703 1.097983 –3.968006 

H 9.38349 1.915264 –2.939021 H –0.335517 5.368942 –3.480048 H 4.720395 2.664414 –4.629344 

C 7.707333 –0.724468 –2.403834 H –2.109915 5.578427 –3.577012 O 3.354876 1.090193 –4.820685 

H 7.858289 0.508727 –4.146994 O –0.191367 4.782865 –0.936725 O –1.009021 –4.587159 1.762126 

H 7.184141 1.326086 –2.708818 H –2.257635 4.705549 –1.174204 H 0.547921 –5.034181 3.065652 

O 6.461389 –1.224704 –2.894748 H –1.461678 6.296269 –1.376996 H –0.654664 –6.323301 2.762483 

H 8.51379 –1.433247 –2.645101 C –0.159886 3.506886 –0.508571 H 3.698924 0.83184 –5.681931 

H 7.663747 –0.634547 –1.308174 C 1.153952 3.134035 0.065716 C –0.622814 –3.292064 1.722307 

C 6.156218 –2.478377 –2.511146 O –1.107267 2.756215 –0.584892 C –1.629686 –2.426999 1.064387 

C 4.840663 –2.929066 –3.034543 C 1.266629 1.88985 0.699968 O 0.425995 –2.891612 2.175776 

O 6.878187 –3.15374 –1.815919 C 2.270845 3.977128 –0.013968 C –1.210818 –1.178038 0.583291 

C 4.436347 –4.23424 –2.73201 C 2.471066 1.49522 1.267363 C –2.975803 –2.800795 0.949365 

C 4.003666 –2.105849 –3.799452 H 0.38364 1.249419 0.754303 H –0.153705 –0.910802 0.678632 

C 3.205983 –4.706718 –3.170907 H 2.179662 4.938767 –0.520608 C –2.124026 –0.306567 0.00352 

H 5.110693 –4.864404 –2.148191 C 3.481145 3.57725 0.537355 C –3.899522 –1.911851 0.412946 

C 2.777107 –2.581662 –4.242038 C 3.586993 2.337586 1.184042 H –3.29501 –3.780673 1.307722 

H 4.301302 –1.084003 –4.036082 H 2.562723 0.538615 1.786623 H –1.812884 0.672519 –0.372981 

C 2.353591 –3.878404 –3.915045 H 4.359822 4.220553 0.470313 C –3.479868 –0.660394 –0.056411 

H 2.913922 –5.736998 –2.95638 C 4.870675 1.8614 1.758867 H –4.953983 –2.183304 0.351067 

H 2.125107 –1.951242 –4.851217 O 5.034712 0.775603 2.262927 C –4.436362 0.351495 –0.574282 

C 1.054271 –4.350877 –4.476547 O 5.852784 2.775564 1.657684 O –5.712276 0.054301 –0.25895 

O 0.463487 –5.429771 –3.886343 H 6.65013 2.354903 2.013837 O –4.123471 1.354762 –1.173878 

O 0.568835 –3.875771 –5.4689 H 1.947494 –0.708242 –1.544036 C –6.699606 1.037211 –0.563042 

C 0.270652 –5.487928 –2.480503 C 2.601389 –1.30334 –0.907741 C –6.421 2.407679 0.058766 

C –0.999222 –4.774572 –2.106604 C 2.172946 –2.520668 –0.403477 H –6.801026 1.145314 –1.654253 

H 0.207039 –6.551587 –2.210521 C 3.881944 –0.819277 –0.604518 H –7.628122 0.601701 –0.175654 

H 1.113282 –5.047512 –1.926864 H 1.174431 –2.890002 –0.649782 O –5.6467 2.212636 1.230143 

O –0.788038 –3.403902 –2.423762 C 3.013729 –3.258216 0.4444 H –7.372365 2.894339 0.322896 

H –1.203781 –4.875543 –1.026112 C 4.720833 –1.555907 0.238367 H –5.875786 3.071998 –0.622826 

H –1.870031 –5.154164 –2.659618 C 4.379181 0.447448 –1.194657 C –4.508727 2.93829 1.360667 

C –1.866725 –2.655482 –2.754185 C 2.573205 –4.520744 1.077803 C –3.526288 2.23251 2.219633 

C –1.469972 –1.272032 –3.104834 C 4.283108 –2.763988 0.767483 O –4.31046 3.983225 0.792316 

O –2.999238 –3.072148 –2.720699 H 5.71155 –1.16626 0.4768 C –3.791997 0.967268 2.763442 

C –0.126755 –0.877595 –3.151466 O 5.471676 0.929251 –0.978337 C –2.251212 2.795191 2.35919 

C –2.477221 –0.323676 –3.306497 O 3.467252 0.995854 –2.013005 C –2.774027 0.24063 3.367112 

H 0.653545 –1.626736 –3.016401 O 1.446321 –5.019515 0.494746 H –4.787212 0.53402 2.653335 

C 0.207384 0.457187 –3.334296 O 3.120425 –5.067352 2.003333 H –2.070566 3.78717 1.940706 

C –2.151349 1.015289 –3.470122 H 4.917296 –3.344154 1.43986 C –1.23338 2.067457 2.957209 

H –3.518789 –0.650482 –3.27497 C 3.840061 2.154298 –2.76398 C –1.478732 0.769315 3.425189 

H 1.253825 0.772085 –3.359812 C 0.797957 –6.075581 1.192851 H –2.96204 –0.76663 3.74259 

C –0.808925 1.415325 –3.459496 H 2.917481 2.738591 –2.876682 H –0.219674 2.466478 3.035073 

H –2.936486 1.765529 –3.548585 H 4.591357 2.733184 –2.207863 C –0.31522 –0.046726 3.85282 

C –0.425717 2.846064 –3.443626 C 4.375202 1.749571 –4.10973 O 0.835339 0.310597 3.751579 

O –1.505687 3.653088 –3.438068 C –0.067666 –5.521243 2.297301 O –0.668109 –1.256784 4.318921 

O 0.712185 3.256682 –3.377139 H 0.189533 –6.5975 0.441797 H 0.156945 –1.760858 4.410312 
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Figure A 3. Independent gradient model (IGMH) analysis scatter plots of weak interactions between 

phenylacetic acid, benzoic acid, benzamide, aniline and phenol, and mPET at all four adsorption sites. In 

the usual colouring scheme, the blue colour represents attractive interactions, the green colour represents 

van der Waals interactions, and the red colour represents non-bonding interactions. 
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Figure A 4. Independent gradient model (IGMH) analysis scatter plots of weak interactions between 

anisole, triazine, chlorotriazine, benzene and chlorobenzene, and mPET at all four adsorption sites. In the 

usual colouring scheme, the blue colour represents attractive interactions, the green colour represents van 

der Waals interactions, and the red colour represents non-bonding interactions. 
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Figure A 5. Independent gradient model (IGMH) analysis scatter plots of weak interactions between a 

water molecule and mPET at all four adsorption sites. In the usual colouring scheme, the blue colour 

represents attractive interactions, the green colour represents van der Waals interactions, and the red 

colour represents non-bonding interactions. 

 

 

Figure A 6. Schematic representations of the interactions between the model pollutants and mPET at 

adsorption site I analysed by independent gradient model (IGMH) and visualised on 0.01 a.u. isosurface. 

In the usual colouring scheme, the blue colour represents attractive interactions, the green colour 

represents van der Waals interactions, and the red colour represents non-bonding interactions. 

 

 

Figure A 7. Schematic representations of the interactions between the model pollutants and mPET at 

adsorption site II analysed by independent gradient model (IGMH) and visualised on 0.01 a.u. isosurface. 

In the usual colouring scheme, the blue colour represents attractive interactions, the green colour 

represents van der Waals interactions, and the red colour represents non-bonding interactions. 
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Figure A 8. Schematic representations of the interactions between the model pollutants and mPET at 

adsorption site III analysed by independent gradient model (IGMH) and visualised on 0.01 a.u. isosurface. 

In the usual colouring scheme, the blue colour represents attractive interactions, the green colour 

represents van der Waals interactions, and the red colour represents non-bonding interactions. 

 

 

Figure A 9. Schematic representations of the interactions between the model pollutants and mPET at 

adsorption site IV analysed by independent gradient model (IGMH) and visualised on 0.01 a.u. isosurface. 

In the usual colouring scheme, the blue colour represents attractive interactions, the green colour 

represents van der Waals interactions, and the red colour represents non-bonding interactions. 
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Figure A 10. Schematic representations of the interactions between the water molecule and mPET at four 

adsorption sites analysed by independent gradient model (IGMH) and visualised on 0.01 a.u. isosurface. 

In the usual colouring scheme, the blue colour represents attractive interactions, the green colour 

represents van der Waals interactions, and the red colour represents non-bonding interactions. 
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Figure A 11. Structures of PET model with benzene, toluene, styrene, phenylacetylene and chlorobenzene 

adsorbed on four adsorption sites. The structures were optimized by M06-L/def2-SVP/svpfit method.  
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Figure A 12. Structures of PET model with bromobenzene, fluorobenzene, phenol, anisole. and 

benzaldehyde adsorbed on four adsorption sites. The structures were optimized by M06-L/def2-

SVP/svpfit method.  
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Figure A 13. Structures of PET model with acetophenone, benzoic acid, phenylacetic acid, aniline, and N-

methylaniline adsorbed on four adsorption sites. The structures were optimized by M06-L/def2-

SVP/svpfit method.   
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Figure A 14. Structures of PET model with N,N-dimethylaniline, benzonitrile, nitrobenzene, benzamide, 

and thiophenol adsorbed on four adsorption sites. The structures were optimized by M06-L/def2-

SVP/svpfit method.   
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Figure A 15. Structures of PET model with phenylsulfenic acid, phenylsulfinic acid, phenylsulfonic acid, 

benzenesulfonamide, and phenylphosphonic acid adsorbed on four adsorption sites. The structures were 

optimized by M06-L/def2-SVP/svpfit method.   
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Figure A 16. Structures of PET model with o-xylene, catechol, o-phenyldiamine, triazine, and 

chlorotriazine adsorbed on four adsorption sites. The structures were optimized by M06-L/def2-

SVP/svpfit method. 
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Table A 7. Statistical evaluation of QSPR models for predicting interaction energies between m-OPs and 

the adsorption sites I, II, III and IV of PET MP derived for training set (25 molecules) and applied on test 

set (5 molecules). 

Model 
Training set (n = 25) Test set (n = 5) 

R2 Q2 F p s SPRESS R2 F s 

I 0.88 0.84 53.25 <0.0001 2.73 3.21 0.81 17.48 3.35 

II 0.93 0.89 65.95 <0.0001 1.37 1.71 0.99 274.35 1.07 

III 0.91 0.87 73.38 <0.0001 1.57 1.94 0.89 31.27 1.92 

IV 0.91 0.86 68.92 <0.0001 1.27 1.57 0.94 60.38 1.92 

 

Table A 8. The fitting criteria values and the values of internal and external validation criteria for the selected 

models QSPR Model I, Model II, Model III and Model IV for the interaction energies between m-OPs and 

the adsorption sites I, II, III and IV of PET MP respectively. 

  
Criteria 

Model 

  I II III IV 

F
it

ti
n
g
 

R2 0.88 0.93 0.91 0.91 

R2
adj 0.86 0.92 0.89 0.89 

R2 – R2
adj 0.02 0.01 0.01 0.01 

LOF 10.81 3.20 3.81 2.36 

RMSEtr 2.50 1.22 1.48 1.17 

MAEtr 1.95 0.97 1.15 0.94 

CCCtr 0.94 0.96 0.95 0.95 

In
te

rn
al

 v
al

id
at

io
n
 

Q2
loo 0.83 0.89 0.86 0.86 

R2 – Q2
loo 0.05 0.04 0.05 0.05 

RMSEcv 3.00 1.53 1.83 1.44 

MAEcv 2.35 1.22 1.41 1.15 

PRESScv 225.51 58.17 83.97 51.72 

CCCcv 0.91 0.94 0.92 0.93 

Q2
LMO 0.81 0.88 0.82 0.85 

R2Yscr 0.12 0.16 0.13 0.13 

Q2Yscr –0.26 –0.33 –0.27 –0.25 

E
x

te
rn

al
  

v
al

id
at

io
n
 RMSEext 2.60 0.92 1.20 1.48 

MAEext 2.06 0.84 0.79 1.27 

PRESSext 33.79 4.24 7.21 11.01 

R2
ext 0.94 0.99 0.92 0.94 
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Table A 9. Normalized molecular descriptors of 30 molecules calculated by Dragon 6.0. and used to build 

Model I that predicts the interaction energies between m-OPs and the adsorption site I of PET MP. The 

molecules used for test set are underlined and typed in bold.  

Compound Abbrevation Eint(I) / kcal mol–1 RDF050m F01[C–O] SAacc 

Benzene Bz –10.20 0.01 0.00 0.00 

Toluene PhMe –9.89 0.01 0.00 0.00 

Styrene Sty –10.34 0.24 0.00 0.00 

Phenylacetylene PhA –12.29 0.23 0.00 0.00 

Chlorobenzene PhCl –11.71 0.03 0.00 0.00 

Bromobenzene PhBr –11.87 0.35 0.00 0.00 

Fluorobenzene PhF –12.10 0.00 0.00 0.16 

Phenol PhOH –21.30 0.00 0.50 0.45 

Anisole PhOMe –19.21 0.38 1.00 0.12 

Benzaldehide PhCHO –20.34 0.35 0.50 0.27 

Acetophenone AcPHO –21.24 0.76 0.50 0.27 

Benzoic acid BA –29.43 0.78 1.00 0.72 

Phenylacetic acid PAA –29.89 0.53 1.00 0.72 

Aniline PhNH2 –20.18 0.00 0.00 0.35 

N–Methylaniline NMA –17.28 0.40 0.00 0.54 

N,N–Dimethylaniline DMA –13.24 0.18 0.00 0.19 

Benzonitrile PhCN –19.47 0.07 0.00 0.33 

Nitrobenzene PhNO2 –18.26 0.47 0.00 0.03 

Benzamide BAM –32.69 0.66 0.50 0.61 

Thiophenol PhSH –12.99 0.08 0.00 0.00 

Phenylsulfenic acid PhSOH –19.41 0.26 0.00 0.41 

Phenylsulfinic acid PhSOOH –30.18 0.91 0.00 0.67 

Phenylsulfonic acid PhSO2OH –32.04 1.00 0.00 0.88 

Benzenesulfonamide BSAM –22.99 0.92 0.00 0.80 

Phenylphosphonic acid PhPO(OH)2 –29.62 0.71 0.00 1.00 

o–xylene o–PhMe2 –11.57 0.01 0.00 0.00 

Catechol o–Ph(OH)2 –25.03 0.00 1.00 0.90 

o–Phenyldiamine o–Ph(NH2)2 –18.95 0.00 0.00 0.70 

Triazine Tr –18.96 0.00 0.00 0.53 

Chlorotriazine TrCl –20.05 0.00 0.00 0.53 

Normalization factor:    3.26 2.00 94.53 
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Table A 10. Normalized molecular descriptors of 30 molecules calculated by Dragon 6.0. and used to build 

Model II that predicts the interaction energies between m-OPs and the adsorption site II of PET MP. The 

molecules used for test set are underlined and typed in bold. 

Compound Abbrevation Eint(II) / kcal mol–1 SM15_AEA(ed) Mor22s HATS4u MLOGP2 

Benzene Bz –9.44 0.71 0.09 0.46 0.59 

Toluene PhMe –7.98 0.83 0.05 1.00 0.79 

Styrene Sty –13.00 0.85 –0.02 0.35 0.94 

Phenylacetylene PhA –11.90 0.85 0.03 0.38 0.94 

Chlorobenzene PhCl –10.91 0.83 0.12 0.47 0.96 

Bromobenzene PhBr –11.08 0.83 –0.10 0.48 1.07 

Fluorobenzene PhF –10.40 0.83 –0.41 0.47 0.84 

Phenol PhOH –18.63 0.83 0.28 0.49 0.26 

Anisole PhOMe –16.09 0.85 –0.35 0.43 0.40 

Benzaldehide PhCHO –15.41 0.85 –0.08 0.49 0.36 

Acetophenone AcPHO –18.19 0.91 0.20 0.43 0.51 

Benzoic acid BA –20.78 0.91 0.83 0.40 0.33 

Phenylacetic acid PAA –17.25 0.86 0.14 0.81 0.36 

Aniline PhNH2 –15.23 0.83 0.22 1.05 0.26 

N–Methylaniline NMA –16.75 0.91 0.29 0.49 0.41 

N,N–Dimethylaniline DMA –17.05 0.85 –0.08 0.44 0.40 

Benzonitrile PhCN –15.69 0.85 –0.54 0.50 0.36 

Nitrobenzene PhNO2 –15.58 0.91 –0.12 0.98 0.56 

Benzamide BAM –22.49 0.91 0.64 0.69 0.19 

Thiophenol PhSH –15.35 0.83 0.05 0.49 0.74 

Phenylsulfenic acid PhSOH –18.92 0.85 0.24 0.65 0.26 

Phenylsulfinic acid PhSOOH –17.59 0.91 –0.37 0.85 0.12 

Phenylsulfonic acid PhSO2OH –25.21 1.00 0.07 0.77 0.08 

Benzenesulfonamide BSAM –22.14 1.00 –0.49 0.72 0.02 

Phenylphosphonic acid PhPO(OH)2 –23.72 1.00 0.01 0.80 0.10 

o–xylene o–PhMe2 –10.58 0.90 –0.52 0.79 1.00 

Catechol o–Ph(OH)2 –22.44 0.90 0.27 0.49 0.09 

o–Phenyldiamine o–Ph(NH2)2 –18.71 0.90 0.43 0.90 0.09 

Triazine Tr –11.88 0.71 –0.47 0.62 0.01 

Chlorotriazine TrCl –11.97 0.83 –1.00 0.66 0.13 

Normalization factor:    29.43 1.37 1.09 8.65 
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Table A 11. Normalized molecular descriptors of 30 molecules calculated by Dragon 6.0. and used to build 

Model III that predicts the interaction energies between m-OPs and the adsorption site III of PET MP. The 

molecules used for test set are underlined and typed in bold. 

Compound Abbrevation Eint(III) / kcal mol–1 TDB04v CATS2D_03_DL F02[O–O] 

Benzene Bz –7.06 0.36 0.00 0.00 

Toluene PhMe –9.01 0.60 0.00 0.00 

Styrene Sty –11.28 0.77 0.00 0.00 

Phenylacetylene PhA –11.18 0.88 0.00 0.00 

Chlorobenzene PhCl –10.75 0.63 0.00 0.00 

Bromobenzene PhBr –11.48 0.70 0.00 0.00 

Fluorobenzene PhF –9.37 0.47 0.00 0.00 

Phenol PhOH –16.59 0.51 0.50 0.00 

Anisole PhOMe –9.32 0.67 0.00 0.00 

Benzaldehide PhCHO –10.63 0.76 0.00 0.00 

Acetophenone AcPHO –11.49 0.82 0.00 0.00 

Benzoic acid BA –17.58 0.86 0.50 0.33 

Phenylacetic acid PAA –16.20 0.81 0.25 0.33 

Aniline PhNH2 –12.95 0.54 0.50 0.00 

N–Methylaniline NMA –11.81 0.86 0.00 0.33 

N,N–Dimethylaniline DMA –13.83 0.67 0.50 0.00 

Benzonitrile PhCN –13.60 0.82 0.00 0.00 

Nitrobenzene PhNO2 –9.68 0.73 0.00 0.00 

Benzamide BAM –16.27 0.81 0.50 0.00 

Thiophenol PhSH –12.80 0.67 0.00 0.00 

Phenylsulfenic acid PhSOH –13.71 0.80 0.50 0.00 

Phenylsulfinic acid PhSOOH –19.43 0.92 0.50 0.33 

Phenylsulfonic acid PhSO2OH –25.97 1.00 0.50 1.00 

Benzenesulfonamide BSAM –15.74 0.95 0.50 0.33 

Phenylphosphonic acid PhPO(OH)2 –26.66 0.95 1.00 1.00 

o–xylene o–PhMe2 –11.29 0.74 0.00 0.00 

Catechol o–Ph(OH)2 –17.70 0.64 1.00 0.00 

o–Phenyldiamine o–Ph(NH2)2 –14.70 0.66 1.00 0.00 

Triazine Tr –7.79 0.25 0.00 0.00 

Chlorotriazine TrCl –9.35 0.67 0.00 0.00 

Normalization factor:    0.34 4.00 3.00 
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Table A 12. Normalized molecular descriptors of 30 molecules calculated by Dragon 6.0. and used to build 

Model IV that predicts the interaction energies between m-OPs and the adsorption site IV of PET MP. The 

molecules used for test set are underlined and typed in bold. 

Compound Abbrevation Eint(IV) / kcal mol–1 RDF050u MLOGP2 SAdon 

Benzene Bz –8.28 0.38 0.55 0.00 

Toluene PhMe –9.18 0.32 0.73 0.00 

Styrene Sty –10.08 0.40 0.88 0.00 

Phenylacetylene PhA –9.27 0.35 0.88 0.00 

Chlorobenzene PhCl –8.88 0.30 0.89 0.00 

Bromobenzene PhBr –8.97 0.53 1.00 0.00 

Fluorobenzene PhF –8.75 0.26 0.79 0.00 

Phenol PhOH –15.37 0.25 0.24 0.57 

Anisole PhOMe –11.53 0.79 0.37 0.00 

Benzaldehide PhCHO –9.59 0.48 0.34 0.00 

Acetophenone AcPHO –13.64 0.67 0.48 0.00 

Benzoic acid BA –14.17 0.59 0.31 0.57 

Phenylacetic acid PAA –13.98 0.47 0.34 0.57 

Aniline PhNH2 –12.79 0.24 0.24 0.44 

N–Methylaniline NMA –10.23 0.39 0.38 0.00 

N,N–Dimethylaniline DMA –11.22 0.43 0.37 0.24 

Benzonitrile PhCN –9.17 0.28 0.34 0.00 

Nitrobenzene PhNO2 –12.31 0.68 0.52 0.00 

Benzamide BAM –17.78 0.73 0.18 0.44 

Thiophenol PhSH –12.25 0.47 0.69 0.00 

Phenylsulfenic acid PhSOH –14.99 0.57 0.24 0.53 

Phenylsulfinic acid PhSOOH –18.33 0.80 0.11 0.53 

Phenylsulfonic acid PhSO2OH –18.49 1.00 0.07 0.53 

Benzenesulfonamide BSAM –20.58 0.92 0.02 0.42 

Phenylphosphonic acid PhPO(OH)2 –19.26 0.80 0.09 1.00 

o–xylene o–PhMe2 –9.19 0.50 0.93 0.00 

Catechol o–Ph(OH)2 –15.69 0.13 0.09 1.15 

o–Phenyldiamine o–Ph(NH2)2 –12.39 0.12 0.09 0.89 

Triazine Tr –7.79 0.00 0.01 0.00 

Chlorotriazine TrCl –8.65 0.00 0.12 0.00 

Normalization factor:    7.41 9.27 74.26 
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Table A 13. The assigned OPLS‐AA Lennard‐Jones parameters and atomic mass. 

Atom type m (amu) charge p-type σ (nm) ε (kJ/mol) 

HO 1.008 0 A 0.050 0.126 

OH 15.999 0 A 0.300 0.711 

O 15.999 0 A 0.296 0.879 

OES 15.999 0 A 0.290 0.586 

CO 12.012 0 A 0.375 0.276 

CA 12.012 0 A 0.355 0.293 

CT 12.012 0 A 0.350 0.276 

HA 1.008 0 A 0.242 0.126 

HAE 1.008 0 A 0.242 0.126 

 

Table A 14. The assigned OPLS-AA bond parameters.  

Atom type 
Function d (nm) k (kJ/(mol nm2)) 

i j 

HO OH 1 0.0945 442400 

OH CO 1 0.1364 360000 

CO O 1 0.1229 456000 

CO CA 1 0.1490 320000 

CA CA 1 0.1400 375200 

CA HA 1 0.1080 293600 

CO OES 1 0.1327 171200 

OES CT 1 0.1410 256000 

CT CT 1 0.1529 214400 

CT HAE 1 0.1090 272000 

CT OH 1 0.1410 267776 
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Table A 15. The assigned OPLS-AA angle parameters. 

Atom type 
Function θ (°) k (kJ/(mol/rad2)) 

i j k 

OH CO O 1 123.32 836.8 

OH CO CA 1 111.88 711.28 

O CO CA 1 120.4 669.44 

CO CA CA 1 120 711.28 

CA CA HA 1 120 292.88 

CA CO OES 1 111.4 677.808 

O CO OES 1 123.4 694.544 

CO OES CT 1 116.9 694.544 

OES CT HAE 1 109.5 292.88 

CT CT HAE 1 110.7 313.8 

OES CT CT 1 109.5 418.4 

HO OH CO 1 113 292.88 

CA CA CA 1 120 527.184 

CT CT OH 1 109.5 418.4 

HAE CT OH 1 109.5 292.88 

CT OH HO 1 108.5 460.24 

HAE CT HAE 1 107.8 276.144 

 

Table A 16. The assigned OPLS-AA dihedral parameters. 

Atom type 
Function 

co 

(kJ/mol) 

c1 

(kJ/mol) 

c2 

(kJ/mol) 

c3 

(kJ/mol) 

c4 

(kJ/mol) 

c5 

(kJ/mol) i j k l 

HO OH CO O 3 33.616 –3.688 –29.928 0.000 0.000 0.000 

CO CA CA HA 3 29.000 0.000 –29.000 0.000 0.000 0.000 

CO CA CA CA 3 29.000 0.000 –29.000 0.000 0.000 0.000 

CA CA CA CA 3 29.000 0.000 –29.000 0.000 0.000 0.000 

CA CA CA HA 3 29.000 0.000 –29.000 0.000 0.000 0.000 

CA CA CO O 3 8.400 0.000 –8.400 0.000 0.000 0.000 

CA CA CO OES 3 7.900 0.000 –7.900 0.000 0.000 0.000 

CA CO OES CT 3 28.386 –2.398 –25.988 0.000 0.000 0.000 

O CO OES CT 3 24.000 0.000 –24.000 0.000 0.000 0.000 

CO OES CT CT 3 –4.326 2.446 3.760 –1.880 0.000 0.000 

CO OES CT HAE 3 0.322 0.966 0.000 –1.288 0.000 0.000 

OES CT CT HAE 3 0.936 2.808 0.000 –3.744 0.000 0.000 

HAE CT CT HAE 3 0.600 1.800 0.000 –2.400 0.000 0.000 

CT CT OH HO 3 –6.386 –9.030 15.416 0.000 0.000 0.000 

HAE CT CT OH 3 0.600 1.800 0.000 –2.400 0.000 0.000 

HAE CT OH HO 3 0.778 2.334 0.000 –3.112 0.000 0.000 

HO OH CO CA 3 29.288 –8.368 –20.920 0.000 0.000 0.000 

OES CT CT OES 3 –1.151 1.151 0.000 0.000 0.000 0.000 

OES CT CT OH 3 –1.151 1.151 0.000 0.000 0.000 0.000 

OH CO CA CA 3 8.786 0.000 –8.786 0.000 0.000 0.000 
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Figure A 17. Energy minimization and equilibration of a) simazine, b) atrazine, c) diuron, d) alachlor and 

e) isoproturon molecule in water in NVT and NPT ensemble.  
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Appendix B 

 

 

Figure A 18. SEM images of pristine (left) and thermally aged (right) PET MP. 
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Appendix C 

Listing A 1. Python code used to extract quantitative results from Gaussian output file (.out) after 

optimization or single point calculation.  

 1. #Extract HF, RMSD, Dipole, HOMO, LUMO from Gaussian out files (.out) in csv file 
 2.   
 3. #input your path to the folder containing output files 
 4. pathS = "/path_to_foder_containing_your_output_files/" 
 5.   
 6. import subprocess 
 7.   
 8. def sysstout(cmd): 
 9.     cnt=0;rc=1 
10.     process = subprocess.Popen( 
11.   cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, 
12.   shell=True,universal_newlines=True 
13.   ) 
14.     process.wait() 
15.     rc=process.returncode 
16.     return process.communicate() 
17.   
18. import numpy as np  
19.   
20. def find_indices(list_to_check, item_to_find): 
21.     array = np.array(list_to_check) 
22.     indices = np.where(array == item_to_find)[0] 
23.     return list(indices) 
24.   
25. lSL=sysstout("ls "+pathS)[0].split() 
26.   
27. outSL = [lineS  for lineS in lSL if ".out" in lineS and "slurm" not in lineS ] 
28. resultSLL = [] 
29. resultSL = [] 
30.   
31. for out in outSL:  
32.     fo= open(pathS + out)  
33.     do = fo.readlines()  
34.     fo.close  
35.     d = "".join(do).replace("\n", "").replace(" ", "").split("\\") 
36.     nSL = [lineS for lineS in d if "HF=" in lineS or "RMSD=" in lineS  
37.   or "Dipole=" in lineS ][-3:] 
38.     numSL = [lineS[lineS.index("=") + 1:] for lineS in nSL] 
39.     dipoleL = [float(result) for result in numSL[2].split(",")]  
40.     dipoleS = str((dipoleL[0]**2+dipoleL[1]**2+dipoleL[2]**2)**0.5 / 0.393430307) 
41.     oSL = [lineS for lineS in do if "Alpha  occ. eigenvalues" in lineS][-1] 
42.     HOMO=oSL[oSL.index("\n")-8:oSL.index("\n")] 
43.     a = find_indices(do, "            Population analysis using the SCF Density.\n") 
44.     bo=do[a[-1]:] 
45.     oSL = [lineS for lineS in bo if "Alpha virt. eigenvalues" in lineS][0] 
46.     LUMO=oSL[oSL.index("--")+2:oSL.index("--")+13] 
47.     resultSL = [out, numSL[0] , numSL[1] ,dipoleS, HOMO, LUMO, "\n"] 
48.     resultSLL += [", ".join(resultSL)] 
49.   
50. result = "name, HF, RMSD, Dipole,HOMO,LUMO \n" 
51. resultS=" ".join(resultSLL) 
52.   
53. f = open(pathS + "HF_RMSD_DIPOLE.txt", "wt")  
54. f.write(result) 
55. f.write(resultS) 
56. f.close  
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Listing A 2. Python code used to extract quantitative results from Gaussian output file (.out) after 

frequency calculation.  

 1. #Extract results from frequency calculation from Gaussian out files (.out) in csv file 
 2. #ZPC, DE, DH, DG, Eo, E, H, G, E(thermal), Cv, S, Polarizability  
 3.   
 4. #input Path to the folder containing output files 
 5. pathS = "/path_to_foder_containing_your_output_files/" 
 6.   
 7. import subprocess 
 8.   
 9. def sysstout(cmd): 
10.     cnt=0;rc=1 
11.     process = subprocess.Popen( 
12.   cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, 
13.   shell=True,universal_newlines=True 
14.   ) 
15.     process.wait() 
16.     rc=process.returncode 
17.     return process.communicate() 
18.   
19. lSL=sysstout("ls "+pathS)[0].split() 
20. outSL = [lineS  for lineS in lSL if ".out" in lineS and "slurm" not in lineS ] 
21. resultSLL = [] 
22. resultSL = [] 
23.   
24. for out in outSL:  
25.     fo= open(pathS + out)  
26.     do = fo.readlines()  
27.     fo.close  
28.     ZPCSL = [lineS for lineS in do if "Zero-point correction" in lineS][:] 
29.     ZPCnumSL = [lineS[lineS.index("=") + 1:-19] for lineS in ZPCSL] 
30.     DESL = [lineS for lineS in do if "Thermal correction to Energy" in lineS][:] 
31.     DEnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in DESL] 
32.     DHSL = [lineS for lineS in do if "Thermal correction to Enthalpy" in lineS][:] 
33.     DHnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in DHSL] 
34.     DGSL = [lineS for lineS in do if "Thermal correction to Gibbs Free Energy" in lineS][:] 
35.     DGnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in DGSL] 
36.     EoSL = [lineS for lineS in do if "Sum of electronic and zero-point Energies" in lineS][:] 
37.     EonumSL = [lineS[lineS.index("=") + 1:-1] for lineS in EoSL] 
38.     ESL = [lineS for lineS in do if "Sum of electronic and thermal Energies" in lineS][:] 
39.     EnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in ESL] 
40.     HSL = [lineS for lineS in do if "Sum of electronic and thermal Enthalpies" in lineS][:] 
41.     HnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in HSL] 
42.     GSL = [lineS for lineS in do if "Sum of electronic and thermal Free Energies" in lineS][:] 
43.     GnumSL = [lineS[lineS.index("=") + 1:-1] for lineS in GSL] 
44.     PSL = [lineS for lineS in do if "Isotropic polarizability" in lineS][:][0] 
45.     P = PSL[45:-9] 
46.     a=do[do.index("                     E (Thermal)             CV                S\n")+2] 
47.     E = a[23:32] 
48.     CV=a[35:53] 
49.     S=a[53:-1] 
50.   
51.     resultSL = [out, ZPCnumSL[0], DEnumSL[0],DHnumSL[0], DGnumSL[0],  
52.   EonumSL[0],EnumSL[0],HnumSL[0],GnumSL[0], E, CV, S, P ] 
53.     resultSLL += [", ".join(resultSL) + "\n"] 
54.   
55. result = "name, ZPC/Ha, DE/Ha, DH/Ha, DG/G, Eo/Ha , E/Ha, H/Ha, G/Ha, E(thermal)/kcal mol-1, " \ 
56.          "Cv/cal mol-1 K-1, S/cal mol-1, Polarizability \n" 
57. resultS=" ".join(resultSLL) 
58. f = open(pathS + "freq.txt", "wt")  
59. f.write(result) 
60. f.write(resultS) 
61. f.close  
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Listing A 3. Python code to create two .gjf files from one containing the geometry of the system with 2 

fragments. The code creates 2 more files that contain only geometry of a single fragment where the second 

one is represented as ghost molecule. Used to calculate interaction energies using CPC method. 

 1. #creates input files to calculate interaction energy of 2 fragments using cpc 
 2. #results in 3 new input files used to calculate energies of each fragment, and of a whole system 
 3.   
 4. #input your path to the folder containing output files 
 5. pathS = "/path_to_foder_containing_your_input_file/" 
 6.   
 7. #define the multiplicity and the charge of the system 
 8. mab = "2 1" 
 9.   
10. #define the multiplicity and the charge for each fragment 
11. ma = "2 1" 
12. mb = "0 1" 
13.   
14. a = ma + " \n" 
15. b = mb + " \n" 
16. m = mab + " " +  ma + " " + mb 
17.   
18. import subprocess 
19.   
20. def sysstout(cmd): 
21.     cnt=0;rc=1 
22.     process = subprocess.Popen( 
23.   cmd, stdout=subprocess.PIPE,  
24.   stderr=subprocess.PIPE,  
25.   shell=True, universal_newlines=True 
26.   ) 
27.     process.wait() 
28.     rc=process.returncode 
29.     return process.communicate() 
30.   
31. lSL=sysstout("ls "+pathS)[0].split() 
32. filenameS = lSL[0].replace(".gjf", "") 
33.   
34. fo = open(pathS + lSL[0]) 
35. inpL = fo.readlines() 
36. fo.close() 
37.   
38. e_abL = inpL 
39. e_aL=[ a if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
40.  if "Fragment=2)" in lineS else  lineS  for lineS in inpL  ] 
41. e_bL=[ b if m in lineS else  lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
42.  if "Fragment=1)" in lineS else  lineS  for lineS in inpL ] 
43.   
44. inputSLL = [e_abL, e_aL, e_bL] 
45. fileextSL = ["_Eab_AB", "_Ea_ABC","_Eb_ABC", "_Ec_ABC"] 
46. inputSL=[] 
47.   
48. for i in range(len(inputSLL)):  
49.     inputSLL[i][2] = "%chk = " + filenameS + fileextSL[i] + ".chk\n" 
50.   
51. for i in range(len(inputSLL)):  
52.     inputSL.append("".join(inputSLL[i])) 
53.   
54. for i in range(len(inputSL)): 
55.     fo = open(pathS + filenameS + fileextSL[i] + ".gjf", "wt") 
56.     fo.write(inputSL[i]) 
57.     fo.close() 
58.   
59. args = "rm", pathS + lSL[0] 
60. subprocess.call('%s %s ' % args, shell=True)  
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Listing A 4. Python code to create 6 .gjf files from one containing the geometry of the system with 3 

fragments. The code creates 6 more files of which 3 contain only geometry of a single fragment where the 

other two are represented as ghost molecules and 3 contain the geometries of 2 fragments where the third 

one is represented as ghost molecule. Used to calculate interaction energies of systems with three fragments 

using CPC method. Modification of code from Listing A 3. 

 1. #creates input files to calculate interaction energy between 3 fragments using cpc.  
 2. #reusult in 7 input files in total. 
 3.   
 4. #input your path to the folder containing output files 
 5. pathS = "/path_to_foder_containing_your_input_file/" 
 6.   
 7. #define the multiplicity and the charge of the system 
 8. mabc = "2 1" 
 9.   
10. #define the multiplicity and the charge for each fragment 
11. ma = "0 1" 
12. mb = "0 1" 
13. mc = "2 1" 
14.   
15. #define the multiplicity and the charge for combinations of fragments 
16. mab = "0 1" 
17. mac = "2 1" 
18. mbc = "2 1" 
19.   
20. a = ma + " \n" 
21. b = mb + " \n" 
22. c = mc + " \n" 
23. ab = mab + " " +  ma + " " + mb + " \n" 
24. ac = mac + " " +  ma + " " + mc + " \n" 
25. bc = mbc + " " +  mb + " " + mc + " \n" 
26. m = mabc + " " + ma + " " + mb + " " + mc 
27.   
28. import subprocess 
29.   
30. def sysstout(cmd): 
31.     cnt=0;rc=1 
32.     process = subprocess.Popen( 
33.   cmd, stdout=subprocess.PIPE,  
34.   stderr=subprocess.PIPE,  
35.   shell=True, universal_newlines=True 
36.   ) 
37.     process.wait() 
38.     rc=process.returncode 
39.     return process.communicate() 
40.   
41. lSL=sysstout("ls "+pathS)[0].split() 
42. filenameS = lSL[0].replace(".gjf", "") 
43.   
44. fo = open(pathS + lSL[0]) 
45. inpL = fo.readlines() 
46. fo.close() 
47.   
48. e_abcL = inpL 
49. e_aL=[ a if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
50.  if "Fragment=2)" in lineS or "Fragment=3" in lineS else  lineS  for lineS in inpL ] 
51. e_bL=[ b if m in lineS else  lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
52.  if "Fragment=1)" in lineS or "Fragment=3" in lineS else  lineS  for lineS in inpL ] 
53. e_cL=[ c if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
54.  if "Fragment=1)" in lineS or "Fragment=2" in lineS else  lineS  for lineS in inpL ] 
55.   
56. e_abL=[ ab if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
57.  if  "Fragment=3" in lineS else  lineS  for lineS in inpL ] 
58. e_acL=[ ac if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
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59.  if "Fragment=2" in lineS else  lineS  for lineS in inpL ] 
60. e_bcL=[ bc if m in lineS else lineS[:lineS.index("(")]+"-Bq"+lineS[lineS.index("("):]  
61.  if "Fragment=1" in lineS else  lineS  for lineS in inpL ] 
62.   
63. inputSLL = [e_abcL,e_abL, e_acL, e_bcL,e_aL, e_bL, e_cL ] 
64. fileextSL = ["_Eabc_ABC", "_Eab_ABC", "_Eac_ABC","_Ebc_ABC", "_Ea_ABC", "_Eb_ABC", "_Ec_ABC"] 
65. inputSL=[] 
66.   
67. for i in range(len(inputSLL)):  
68.     inputSLL[i][2] = "%chk = " + filenameS + fileextSL[i] + ".chk\n" 
69.   
70. for i in range(len(inputSLL)):  
71.     inputSL.append("".join(inputSLL[i])) 
72.   
73. for i in range(len(inputSL)): 
74.     fo = open(pathS + filenameS + fileextSL[i] + ".gjf", "wt") 
75.     fo.write(inputSL[i]) 
76.     fo.close() 
77.   
78. args = "rm", pathS + lSL[0] 
79. subprocess.call('%s %s ' % args, shell=True) 
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Listing A 5. Python code used to extract energies and calculate counterpoise corrected interaction energy 

from three Gaussian output (.out) files that calculate the energy of a whole system and single fragments 

where the other fragment is represented as ghost atoms (the output files after the calculations of input files 

(.gjf) created by code presented in Listing A 3).  

 1. #Extracts interaction energies calculated using cpc 
 2.   
 3. #input your path to the directory that contains output files 
 4. pathS = "/path_to_foder_containing_your_output_files/" 
 5.   
 6. import subprocess 
 7.   
 8. def sysstout(cmd): 
 9.     cnt=0;rc=1 
10.     process = subprocess.Popen( 
11.   cmd, stdout=subprocess.PIPE,  
12.   stderr=subprocess.PIPE,  
13.   shell=True, universal_newlines=True) 
14.     process.wait() 
15.     rc=process.returncode 
16.     return process.communicate() 
17.   
18. lSL=sysstout("ls "+pathS)[0].split() 
19. outSL = [lineS  for lineS in lSL if ".out" in lineS and "slurm" not in lineS] 
20. SCFeL = [] 
21.   
22. for out in outSL: 
23.     fo = open(pathS + out) 
24.     d = fo.readlines() 
25.     fo.close 
26.     elineS = [lineS  for lineS in d if "SCF Done" in lineS][0] 
27.     SCFe = float(elineS.split()[4]) 
28.     SCFeL+=[SCFe] 
29.   
30. corr = (SCFeL[1]-SCFeL[0]-SCFeL[2])*627.5 
31. Eab =SCFeL[1] 
32. Ea =SCFeL[0] 
33. Eb =SCFeL[2] 
34.   
35. resultL = [corr, Eab, Ea, Eb] 
36. resultSL = [str(result) for result in resultL]  
37. resultS = outSL[0][:-10] +","+ ", ".join(resultSL) + "\n" 
38.   
39. nresultS = "file name, CP_corrected_energy/kcal mol-1, Eab/Ha, Ea/Ha, Eb/Ha\n" 
40.   
41. f = open(pathS + "cpc2_reduced_results.txt", "wt")  
42. f.write(nresultS) 
43. f.write(resultS)  
44. f.close 
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Listing A 6. Python code used to extract energies and calculate counterpoise corrected interaction energy 

from multiple directories that contain three Gaussian output (.out) files that calculate the energy of a whole 

system and single fragments where the other fragment is represented as ghost atoms (the output files after 

the calculations of input files (.gjf) created by code presented in Listing A 3). Modification of code from 

Listing A 5. 

 1. #Extracts interaction energies calculated using cpc 
 2. #extracts from multiple directories 
 3.   
 4. #input your path to the directory that contains directories with output files 
 5. pathS = "/path_to_directory/" 
 6.   
 7. import subprocess 
 8.   
 9. def sysstout(cmd): 
10.     cnt=0;rc=1 
11.     process = subprocess.Popen( 
12.        cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,shell=True, universal_newlines=True) 
13.     process.wait() 
14.     rc=process.returncode 
15.     return process.communicate() 
16.   
17. dirSL=sysstout("ls "+pathS)[0].split() 
18.   
19. resultSLL =[] 
20.   
21. for dir in dirSL: 
22.     lSL = sysstout("ls "+pathS + dir)[0].split() 
23.     outSL = [lineS  for lineS in lSL if ".out" in lineS and "slurm" not in lineS] 
24.     SCFeL = [] 
25.     for out in outSL: 
26.         fo = open(pathS+ dir +"/"+ out) 
27.         d = fo.readlines() 
28.         fo.close 
29.         elineS = [lineS  for lineS in d if "SCF Done" in lineS][0] 
30.         SCFe = float(elineS.split()[4]) 
31.         SCFeL+=[SCFe] 
32.     corr = (SCFeL[1]-SCFeL[0]-SCFeL[2])*627.5 
33.     Eab =SCFeL[1] 
34.     Ea =SCFeL[0] 
35.     Eb =SCFeL[2] 
36.     resultL = [corr, Eab, Ea, Eb] 
37.     resultSL = [str(result) for result in resultL]  
38.     resultSLL += [outSL[0][:-10] +","+ ", ".join(resultSL) + "\n"] 
39.   
40. resultS = "".join(resultSLL) 
41. nresultS = "file name, CP_corrected_energy/kcal mol-1, Eab/Ha, Ea/Ha, Eb/Ha\n" 
42.   
43. f = open(pathS + "cpc2_reduced_results.txt", "wt")  
44. f.write(nresultS) 
45.   
46. f.write(resultS)  
47. f.close() 
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