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ABSTRACT 

 

A method for real-time monitoring of particle size distribution in the batch crystallisation 
process was developed based on experimental data for the fosamprenavir calcium - methanol 
crystallisation system. The method was developed with the aim of improving the 
pharmaceutical production process considering product quality. Furthermore, such a method is 
a prerequisite for the development of an advanced process control strategy to achieve the 
desired particle size distribution at the end of the batch crystallisation process. 

The first part of the research involved the development of an automated and integrated 
laboratory set-up for experiments and tests of the developed methods. The next step was the 
collection of experimental data from the batch crystallisation process needed for the 
development of calibration models. The final step of the research was the development and 
application of methods for real-time monitoring of the particle size distribution of crystallised 
fosamprenavir calcium. 

The chord length distribution of the crystallised sample was recorded in real time using the 
focused beam reflectometer. As this type of data is not a reliable representation of the particle 
size distribution, a calibration model is required that describes the functional relationship 
between the chord length distribution and the particle size distribution of the crystallised 
sample. 

The calibration models for real-time monitoring of particle size distribution were developed 
separately using partial least squares regression and artificial neural networks. The results of 
these two mathematical approaches were analysed. Principal component analysis was used for 
preliminary interpretation of the experimental data and detection of outliers. 

Both methods have proven to be applicable for this application. Regression models using the 
partial least squares method have proven to be better for this application, although neural 
networks should not be discard. For non-linear systems and a larger amount of available 
experimental data, artificial neural networks are likely to prove more suitable than partial least 
squares regression models. 

The scientific contribution is achieved through the development and application of an original, 
advanced real-time monitoring strategy for batch crystallisation processes. The application of 
the developed monitoring strategy will, as expected, improve the batch crystallisation process 
and achieve the desired particle size distribution. 

 

Keywords  

batch crystallization, real-time monitoring, particle size distribution, partial least squares 
regression, artificial neural networks 

  



 

 

SAŽETAK 

 

Na temelju eksperimentalnih podataka za kristalizacijski sustav fosamprenavir kalcij - metanol 
razvijena je metoda za praćenje raspodjele veličine čestica u stvarnom vremenu u procesu 
šaržne kristalizacije. Metoda je razvijena s ciljem poboljšanja procesa farmaceutske 
proizvodnje kako bi se ostvarila odgovarajuća kvaliteta proizvoda. Nadalje, prikazana metoda 
je preduvjet za razvoj napredne strategije vođenja procesa za postizanje željene raspodjele 
veličine čestica na kraju šaržnog procesa kristalizacije. 

Prvi dio istraživanja uključivao je razvoj automatiziranog i integriranog laboratorijskog 
sustavaza pokuse i ispitivanja razvijenih metoda. Sljedeći korak bilo je prikupljanje 
eksperimentalnih podataka iz procesa šaržne kristalizacije potrebnih za razvoj kalibracijskih 
modela. Završni korak istraživanja obuhvatio je razvoj i primjenu metoda za praćenje 
distribucije veličine čestica kristaliziranog fosamprenavir kalcija u stvarnom vremenu. 

Distribucija duljine kristaliziranog uzorka snimljena je u stvarnom vremenu pomoću 
reflektometra s fokusiranim snopom. Budući da ova vrsta podataka ne prikazuje pouzdano 
distribucije veličine čestica, potreban je kalibracijski model koji daje funkcionalni odnos 
između distribucije duljine uzorka i distribucije veličine čestica kristaliziranog uzorka. 

Kalibracijski modeli za praćenje distribucije veličine čestica u stvarnom vremenu razvijeni su 
zasebno primjenom djelomične regresije najmanjih kvadrata i umjetnih neuronskih mreža. 
Analizirani su rezultati ova dva pristupa. Analiza glavnih komponenti primijenjena je za 
preliminarno tumačenje eksperimentalnih podataka i otkrivanje odstupajućih vrijednosti. 

Obje metode pokazale su se prikladnim za ovu primjenu. Regresijski modeli koji koriste metodu 
parcijalnih najmanjih kvadrata pokazali su se boljim, iako neuronske mreže ne treba odbaciti. 
Za nelinearne sustave i veću količinu dostupnih eksperimentalnih podataka, umjetne neuronske 
mreže trebale bi se pokazati prikladnijima od parcijalnih modela regresije najmanjih kvadrata. 

Znanstveni doprinos ostvaren je razvojem i primjenom originalne, napredne strategije praćenja 
procesa šaržne kristalizacije u stvarnom vremenu. Primjena razvijene strategije praćenja će, 
očekivano, unaprijediti proces šaržne kristalizacije i postići željenu distribuciju veličine čestica. 

 

Ključne riječi 

šaržna kristalizacija, praćenje u stvarnom vremenu, raspodjela veličine čestica, parcijalna 
regresija najmanjih kvadrata, umjetne neuronske mreže 
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1. INTRODUCTION 

 

Crystallization process is frequently present in pharmaceutical industry. Final users of 

pharmaceutics are humans. Therefore, safety demands for pharmaceutical industry are very 

strict. Consequence of strict demands is the requirement for continuous control of product and 

process quality. In addition, from an economic point of view, demands for constant 

improvement of the production process, product quality, and energy consumption are being set. 

 In order to produce effective drug with desired health effect Critical Quality Attributes 

(CQA) must be known and understood. Therefore, the goal of drug development process is to 

develop drug that has satisfactory CQA, i.e. within allowed limits. Quality by Design (QbD) is 

a concept introduced by J.M. Juran which has a goal to build quality into the final product 

during the research and development phase of drug development.1 Regarding to pharmaceutical 

industry QbD includes guidelines for risk management, production control strategies, defining 

Critical Process Parameters (CPP) and CQA. Desired outcome of pharmaceutical research and 

development procedure is safe, reproducible and economically efficient drug production 

process. In order to obtain product with desired CQA, its functional relation with CPP must be 

defined and described. Multidimensional model, describing impact of change in CPP on CQA, 

is developed based on experimental knowledge. Furthermore, boundaries of process design 

space, in which satisfactory product can be obtained, are defined. Desired product quality and 

process efficiency is reachable after defining CQA, CPP and process design space 

supplemented by implementation of Process Analytical Technology, PAT.2, 3 

 PAT methodology consists of numerous analytical techniques. Development of PAT 

enabled continuous monitoring of key process parameters (CPP), i.e. insight into chemical and 

physical changes in process in real-time. Although PAT shows great potential for process 

improvement, it still did not became “mainstream” technology.4,5 In order to encourage 

application of PAT in pharmaceutical industry The United States Food and Drug 

Administration (FDA) published guidance for industry with recommendations on PAT 

implementation.6 Successful implementation of PAT relies on specialized analytical 

instrument, chemometric model, development and application of method, system integration, 

data management, process control strategy and regulatory approval. Conversely, possible 

obstacles are unfit structure of organizations that should implement PAT, higher initial capital 

expenses, lack of short-term outcomes and necessity for validation of new methods by 

regulatory agencies.2 
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 In the presented PhD thesis CQA of interest is Particle Size Distribution, PSD. Particle 

size is one of the key parameters in the pharmaceutical industry. It influences surface area and 

porosity, and therefore has an impact on bioavailability, effectiveness and shelf life of a drug. 

Monitoring of the PSD is important in quality control, as well as in the development of new 

active pharmaceutical ingredients (API).  

 There is a group of PAT techniques related to PSD monitoring and control. Focused 

Beam Reflectance Measurement (FBRM) instrument is used for monitoring quantity of the 

particles and Chord Length Distribution (CLD). The focus of thesis is development of a 

calibration model that correlates CLD with PSD (or Crystal Size Distribution, CSD in case of 

crystalline samples) and its application for real-time monitoring and control of PSD. Calibration 

models are developed using Partial Least Squares Regression (PLSR) and Artificial Neural 

Networks (ANN) for API Fosamprenavir Calcium (FSM-Ca). 

 The thesis comprises four sections.  

Theoretical background gives an insight into the relevant literature and research about 

crystallization, PAT, FBRM, calibration model development and FSM-Ca. 

 Materials and methodology describe materials, methods and procedures used in the 

research. Procedures for determining solubility curve and metastable zone width, MSZW, 

recrystallization processes for acquiring FSM-Ca samples with different PSDs and procedures 

for PSD determination of the newly acquired samples are described in detail. In addition, 

calibration experiments and model development procedures using PLSR and ANN are given. 

 Results and discussion elaborate results of conducted experiments and quality of 

developed calibration models. Determined solubility curve and MSZW of FSM-Ca 

crystallization systems, PSDs of recrystallized samples and acquired CLD samples for model 

development are interpreted. Lastly, calibration models using PLSR and ANN were validated 

and compared. 

 Finally, in the Conclusion the achieved results are summarized. This chapter points out 

the scientific contribution and the calibration model application in a practical environment. 
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2. LITERATURE REVIEW 

 

2.1. Crystallization 

 

Crystallization is an important industrial process because many materials and products 

on the market are in the form of crystals. It is widely used because the products are highly 

purified, solid chemical forms that can be obtained from relatively impure solutions in a single 

processing step. Crystallization requires much less energy for separation than distillation and 

other commonly used methods of purification. It can be performed at relatively low 

temperatures and on a scale that varies from a few grams up to thousands of tons per day. 

Starting point of the crystallization process may be out from a vapor, melt, or solution. 

Crystallization from solution is mostly used in industrial applications.7 In the next paragraphs 

crystallization from solution will be explained in detail, since this type of crystallization was 

conducted and examined in presented research.  

Equilibrium relations for crystallization systems are expressed in the form of solubility 

data, which are plotted as phase diagrams or solubility curves shown on Fig. 2.1. The 

concentration is normally plotted as a function of temperature and has no general shape or slope. 

Solubility of compounds is often changed by pH or presence of other soluble impurities. Heat 

effects are related to the quantity of solid product through the heat of crystallization. In case of 

the compounds which have solubility increased with increasing temperature, heat is absorbed 

when the compound dissolves. On the contrary, in case of the compounds which have solubility 

decreased with decreasing temperature, heat is released when compound dissolves. If there is 

no impact of temperature change on the solubility of the compound, there is no heat effect. The 

solubility curve will be continuous as long as the solid substance of a given phase is in contact 

with the solution, and any sudden change in the slope of the curve will be accompanied by a 

change in the heat of solution and a change in the solid phase.  At equilibrium, the heat of 

crystallization is equal and opposite in sign to the heat of solution. 7 
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Figure 2.1. Solubility curves for different compounds 8 

 

Crystallization is usually a slow process. Since final mother liquor is in contact with a 

large enough crystal surface, it can be deducted that the concentration of the mother liquor is 

approximately equal to the saturated solution at the final temperature in the process. In those 

cases, yield of the process is calculated from the initial solution composition and solubility of 

the material at the final temperature. Crystalline product is generated and obtained in two 

following phases, formation and growth of crystals. The formation of a new solid phase either 

on an inert particle in the solution or in the solution itself is called nucleation. The increase in 

size of the nucleus with a layer-by-layer addition of solute is called growth. The growth of the 

crystals can be divided in two steps. First one is diffusion of the solute to the crystal interface, 

followed by incorporation of the same in the crystal lattice. Nucleation can be primary or 

secondary. Primary nucleation occurs at high supersaturation levels and does not interact with 

existing crystals. Secondary nucleation is generation of nuclei from existing crystals when they 

interact with agitator, crystallizer equipment or one another. Either nucleation or crystal growth 

will be controlling mechanism of crystallization process, depending on the degree of agitation 

and temperature. 7 

Crystallization system has a metastable zone, where growth is dominating mechanism 

in the presence of supersaturation (Fig. 2.2.). Secondary nucleation can also occur in this zone. 
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Supersaturation is driving force of both nucleation and crystal growth. If solution is not 

supersaturated, crystals will neither form nor will they grow. Supersaturation refers to the 

quantity of solute present in solution compared to the maximum amount of solute which can be 

dissolved at given process conditions while maintaining equilibrium. Different solutions vary 

greatly in ability to sustain certain amounts of supersaturation. Crystal growth and yield of the 

crystallization process are dependent of the supersaturation level during the process. Particle 

size distribution of the crystalline product depend on the relationship between nucleation and 

growth. If the high numbers of nuclei are formed in the beginning of the process, final yield 

will consist of many small crystals. On the other hand, if a small number of nuclei is generated 

at the start of crystallization, final yield will consist of smaller number of larger crystals. Quality 

of the final crystalline product will depend on the nature of crystalline system, rate of cooling, 

agitation and other factors.7 

 
Figure 2.2. Schematic of metastable zone for undefined crystal system 9 

 

Geometrically, crystal is a solid bounded by planes. The shape and size are functions of 

the interfacial angles and linear dimensions of the faces. Result of the constant interfacial angles 

in crystal is that position of the crystal face during growth or dissolution will always be parallel 

to its original position. This concept is known as the principle of the parallel displacement of 

faces. The rate at which a face moves in a direction perpendicular to its original position is 

called the translation velocity of that face or the rate of growth of that face. Crystal morphology 

refers to the relative sizes of the faces of a crystal. It is dependent of the internal structure and 

external influences during the process (growth rate, solvent used, presence of impurities). 
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Crystal morphology is very important quality of the commercial products. Long, needle-like 

crystals tend to be easily broken during centrifugation and drying. Flat, platelike crystals are 

very difficult to wash during filtration or centrifugation and result in relatively low filtration 

rates. Complex or twinned crystals tend to be more easily broken in transport than chunky, 

compact crystals. Rounded or spherical crystals (caused generally by attrition during growth 

and handling) tend to give considerably less difficulty with caking than do cubical or other 

compact shapes. Since the relative sizes of the individual faces of a crystal vary between wide 

limits, it follows that different faces must have different translational velocities. A geometric 

law of crystal growth known as the overlapping principle is based on those velocity differences: 

in growing a crystal, only those faces having the lowest translational velocities survive, and in 

dissolving a crystal, only those faces having the highest translational velocities survive. When 

crystallizing materials from solutions that contain higher quantities of impurities, common 

practice for reducing the amount of impurities in product is to wash the crystals on the 

centrifuge or filter with either fresh solvent or feed solution. 7 

Polymorphism is the phenomenon when chemically identical crystals have different 

internal structure. Consequence is the variation in physical and chemical properties, such as 

bioavailability and solubility, in different polymorphs.7 

Industrial crystallization processes from solution can be divided conducted in batch or 

continuous manner. These two production concepts are explained in the following two chapters. 

 

2.1.1. Batch Crystallization 

 

Batch crystallization is widely used in chemical industry to isolate a substance from the 

reaction broth and obtain particles with desired properties. It is a very versatile technique 

adaptable to the properties of the mixture to be separated, as well as to desired properties and 

needs of the final product.10 Another reason for use of batch crystallization is the amount of 

product needed. Variety of crystalline products is obtained in small and medium quantities, 

making batch mode of operation much more adaptable than continuous. Disadvantage of batch 

crystallizers is the difficulty at maintaining constant supersaturation, which is common in 

continuous crystallizers and favorable for the product quality and economic aspect of the 

crystallization process. In industrial practice batch crystallizers are not usually operated at 

constant supersaturation because the programmed cooling or evaporation process is too 

expensive and not sufficiently reliable. The lack of inexpensive and robust sensors for 

measuring the level of supersaturation is the main problem with the concept of maintaining 
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constant level of supersaturation.11 In most batch crystallizations, supersaturation is generated 

in three possible ways: cooling, antisolvent or evaporative.10  

Since temperature can be continuously measured, a “programmed” cooling process has 

been proposed for controlling nucleation at a constant rate in a seeded batch crystallizer. Such 

cooling curves show that the temperature should be reduced slowly in the early stages and more 

rapidly at the end of the batch. This is because only a small surface area of the seed crystals or 

nuclei is available initially, but the crystal surface increases with time.11 Obstacle in cooling 

crystallization is the temperature at the inner crystallizer wall. Depending on the cooling rate, 

this temperature is somewhere between internal temperature and jacket temperature. If the 

jacket is too cold to reach high cooling rates, local supersaturation at the wall can become so 

high that nucleation occurs on the wall or in the solution close to the wall, which can broaden 

the particle size distribution obtained.10  

Antisolvent in crystallization can be used in three ways: creating supersaturation in an 

isothermal process, decreasing the solubility at the end of a cooling crystallization to increase 

yield, for modification of the solubility of substance. When antisolvent is used for increasing 

the yield of process, there is a risk of spontaneous nucleation around the location of the addition 

in the crystallizer because local supersaturation will reach its maximum values. This process 

may also trigger formation of less stable polymorphs or solvates. Limited addition of the 

antisolvents is advised whenever possible. Antisolvent can be mixed with the solvent before 

adding the solute, this way crystallization system will have solubility properties that enable a 

cooling crystallization without any further antisolvent addition after the crystallization has 

started. Some of the drawbacks of antisolvent addition can be partially mitigated if the 

antisolvent is added at a lower temperature after seeding and cooling when there is less solute 

remaining in the solvent and where there is a much higher surface area of crystals available that 

can consume the generated supersaturation faster than the few seed crystals at the beginning of 

the crystallization process. The antisolvent addition temperature should, however, not be too 

low to allow for good crystal growth kinetics and yield. In many cases, the addition of small 

amounts of antisolvent significantly increases the solubility of the solvent mix before the 

antisolvent characteristics are developed. In this case, the antisolvent helps as a solubility 

facilitator by building a bridge between areas of the molecule that do not interact with the initial 

solvent but show affinity to parts of the antisolvent that itself is interacting with the solvent.10  

Evaporative crystallization is a technique of choice for crystallization systems with 

weak dependence of solubility on temperature. Drawback of this technique are dropping level 

of liquid in the vessel which may lead to the formation of crust. Crust is difficult to remove and 
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process conditions in the crust are not well defined. Another problem is when solvent mixtures 

are used, the solvent composition will change over the time. In case different solvates are 

traversed, it may be difficult to obtain the desired particle properties. Acceptable yields can 

only be reached for high degrees of evaporation. Thus, an evaporative crystallization step at 

elevated temperature is followed by a cooling step to increase yield.10 

Batch crystallization is relatively simple to operate and control, and very adaptable to 

fully automatic operation. Fill and drain operations are usually fully automated, slurry density 

and mixer speed can be adjusted before each batch or during a batch, as a function of operation 

time. Process parameters typically controlled in batch crystallization are rate of temperature 

change (set by degree of supersaturation desired for the optimum crystal growth rate), agitator 

or pump speed (achieving appropriate mixing regime to obtain satisfactory crystal size), batch 

time (usually main boundary for the crystallizer design). 12 

 

2.1.2. Continuous Crystallization 

 

Continuously run crystallizers are integrated in a large production plant, which is also 

operated continuously. The main advantage of continuous crystallization is the fact that the 

mean supersaturation is a function of the mean residence time. This means that by maintaining 

certain flow of the product suspension removed from the process for a given volume of process 

suspension, optimum supersaturation level can be maintained during the crystallization process. 

At optimum supersaturation level, median crystal size will have maximum value, because with 

increase of residence time supersaturation decreases, resulting in more crystal growth opposed 

to less nucleation. Mixing in continuous crystallizers is important to avoid local supersaturation 

levels which can result in lower median crystal size. Peaks in local supersaturation usually occur 

in the inlet stream zone or in the surface boiling layer of evaporation crystallizer. Local 

supersaturation also depends on the presence of crystals resulting from the desupersaturation 

caused by crystal growth. Desupersaturation process by growth is very slow in comparison to 

nucleation. Therefore, a high suspension density of fine crystals must be present in the zone of 

high supersaturation to avoid excessive nucleation. On the other hand, it is important to fulfill 

requirements resulting from the population balance. If activated nucleation is to be avoided, it 

is necessary to produce as many active attrition fragments as crystals are withdrawn from the 

crystallizer; otherwise, the number of growing crystals and their volumetric surface can become 

so small that supersaturation increases with time. This can ultimately lead to a nucleation burst 

with a sudden breakdown of the supersaturation. When insufficient attrition fragments are 
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generated in a large industrial continuous crystallizer to replace the number of product crystals 

and the volumetric crystal surface becomes too small, supersaturation starts to increase. Finally, 

the metastable supersaturation limit is reached, which results in a shower of nuclei produced by 

activated nucleation. After a rapid decrease in the mean supersaturation, this driving force starts 

to rise again, and during this period, the newly generated nuclei grow to such an extent that the 

median crystal size decreases. The production or destruction of fines is a suitable tool for 

avoiding or minimizing the oscillation of crystallizers.11 Following two principles for the design 

and layout of continuous crystallizers can be stated: 

 At no location within a crystallizer may the supersaturation reach or exceed the limit of 

the metastable zone in order that primary nucleation is avoided, and only secondary 

nucleation can occur during the crystallization process. 

 The metastable zone width must, however, be exploited to a large extent in order that 

the crystal growth rate available is sufficient. 

Based on these principles, various basic types of continuous crystallizers have been developed 

with which the entire field of demands placed on crystal size distributions and the mean crystal 

sizes can be fulfilled. Each of these basic types is aligned to a certain particle size range. The 

forced circulation (FC) crystallizer is used for the smaller particle sizes up to 0.8mm, the draft 

tube baffle (DTB) crystallizer for the coarser particles up to 2.5mm, and the Oslo-type 

crystallizer for even larger particle sizes. The volume of the crystallizers increases reflecting 

the need to spend more residence time for crystal growth, if coarser crystals have to be 

produced. In order to allow the crystals to become coarser by crystal growth during longer 

residence times, one has to carefully reduce the effective particle generation rate (secondary 

nucleation, attrition, and breakage) before the crystal growth can lead to larger particles.10 

 Variables usually controlled in continuous crystallizers are operating temperature 

(surface-cooled crystallizers), crystallizer level (gas-liquid interface), absolute pressure 

(evaporative/vacuum cooled crystallizer), slurry density (mother liquor recycle), energy input 

or removal (steam to heater, cooling medium rate, or temperature to surface cooler). Following 

parameters are significant for proper crystallization process, but are not usually controlled: feed 

rate, feed temperature, crystal size and agitator or pump speed.12 

 

2.2. Process Analytical Technology – PAT 

 

Process analytical technology (PAT) is defined as a systematic approach for design, 

analysis, and control of manufacturing processes through timely measurements of critical 
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quality and performance attributes. The measurements may be on raw materials, intermediates, 

and products, but often they are of key process parameters which affect the efficiency of the 

process and the quality of the final product of the process.5 Implementation of PAT in R&D or 

manufacturing process involves a combination of analytical chemistry and process chemistry 

with multivariate tools for process understanding. The goal of PAT implementation is increased 

profitability of the process. Savings on implementation of real-time analysis can come from the 

better use of raw material, less energy consumption, higher throughput, or any combination of 

the above. Reduced raw material usage results in reduced waste. A better-controlled process 

yields more products within the specification limits. In batch operations, the quality of batch 

and downstream operations depend on the outcome of a laboratory analysis. With on-line 

equipment, hold time is reduced or eliminated. If operating at capacity, eliminating that hold 

time can contribute to increased manufacturing capacity, which can have a large economic 

impact.13 

PAT approach has been adopted across a wide section of applications for drug-substance 

manufacturing in the pharmaceutical industry. The FDA’s initiative on the Pharmaceutical 

cGMPs for the 21st Century 14, encouraged adoption of new technological advances by the 

pharmaceutical industry, and the subsequent issuance of the FDA PAT guidance of 2004 6, led 

to increased focus on this field and raised expectations of PAT adoption in all phases of 

development by the pharmaceutical industry. While overall adoption of PAT by the 

pharmaceutical industry has since increased significantly, the majority of PAT applications are 

still mainly in the R&D field, aimed predominantly towards understanding in the early process 

development phase and, to a lesser extent, towards the support of late-phase development and 

scale-up activities. The use of PAT as a real-time control tool in commercial manufacture is 

still very limited.5 

 
Figure 2.3. Implementation of PAT in R&D and manufacturing 2 



25 
 

 

The main improvement in early process development enabled by PAT is increased 

mechanistic and process understanding. Implementation of PAT enables collecting higher 

quantities of process data which combined with modeling tools enable in-depth mechanistic 

understanding of process. Advances in PAT are allowing techniques to be used in wider area 

of processes while the level of knowledge that can be gained is also increasing. Greater 

integration of chemometric tools into spectral collection software has enabled obtaining 

quantitative information on the processes with less effort. Novel technologies as well as novel 

uses of existing technologies have extended the applicability of PAT to all of the typical unit 

operations that constitute a drug substance process and shown to result in more efficient 

knowledge generation required to support the development of novel medicines.5 

Furthermore, benefits of using PAT during scale-up from lab to pilot plant are also well-

recognized. PAT allows better process understanding, but with the transition in batch size and 

scale-up PAT can be implemented for process verification and process control. PAT can be part 

of the risk-mitigation strategy during scale-up to ensure that the operation is proceeding as 

intended, to monitor batch-to-batch reproducibility or to assist in process transfer between 

different vessels or sites. Also, in some cases PAT implementation can ensure safe scale-up of 

processes that have traditionally been considered to pose a safety risk. Real-time monitoring 

can be advantageous as an alternative to traditional off-line analysis, because it requires no 

sample preparation and data can be analyzed rapidly. In cases where the samples are difficult 

to access due to safety considerations or sampling concerns (e.g., thick slurries), when an off-

line sample may not be representative (multiphase systems or extreme operating conditions) or 

where frequent sampling is desired PAT may be the only acceptable option. One of the more 

compelling uses for PAT involves the use of on-line monitoring as an integral part of the control 

strategy.5 

In contrast to its use in the lab, on-scale implementation of PAT is still not widely 

accepted. The most important obstacles to overcome are: instrument deployment in a hazardous 

processing environment, requirements for implementation in a Current Good Manufacturing 

Practice regulations (cGMP) setting, data management and interface with plant systems, 

interfacing sampling probes with the process, and method development. Hazardous process 

classifications typically associated with chemical processing areas require the instruments to be 

rated for use in these environments and these requirements are not unified between different 

countries. Operation of PAT systems in a GMP environment necessitates development of 

standard operating procedures (SOP) and workflows for procedures including instrument 
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qualification and change control. Adequate interfacing of the sampling probes with the process 

stream is key to ensure a successful implementation of PAT. Finally, instrument method 

development for on-scale implementation of PAT can also be a challenge. While a high degree 

of sensitivity is typically required, a key condition for reliable measurements is that the methods 

should be robust to typical variations in a chemical process environment. The applications of 

PAT in the manufacturing processes can be broadly categorized into two groups: one is the use 

of PAT as a knowledge gathering tool to support process robustness to enable continuous 

improvement, and as a valuable tool for troubleshooting quality event situations and process 

robustness issues. The second is the use of PAT for control, either to replace traditional off-line 

measurements or in instances where on-line monitoring is an integral part of the control 

strategy, or when the process is not amenable to control by other techniques. Implementation 

of on-line monitoring in a commercial setting to enable control represents a huge step up for 

several reasons. Regulatory filing of PAT methods entails several detailed considerations 

around model development, validation, and lifecycle management. These include investigations 

into specificity and matrix interference, examination of the effects of sample handling and 

preparation, understanding, documentation, and control of the effects of the environmental 

variables on the spectral response, understanding and controlling for the variance in sample 

presentation to the detector, potential use of orthogonal reference methods for calibration, 

validation procedures, and development of lifecycle and post-approval requirements. This may 

often require gathering on-scale batch data for several batches to fine-tune the model. Another 

important requirement to integrate PAT into a control loop is that of data management in a 

manner compliant to the regulations and the use of software that can integrate with plant control 

systems. Furthermore, instrument robustness for a typical 24/7 operation still remains an issue 

for certain PAT technologies.5 

The value of real-time monitoring in the commercial manufacture of drug substances 

has been a topic of great discussion. It is clear that while there are noticeable benefits, there are 

also significant trade-offs in the larger scale and commercial space. On balance, it is accepted 

that there still exists a clear value proposition for use of PAT as a knowledge gathering and 

monitoring tool in the commercial space. The value proposition for replacing traditional off-

line analyses with real-time monitoring is less apparent. The value proposition of replacing 

potentially time-consuming off-line analyses with real-time monitoring realized by the food, 

petrochemical, and polymer industries does not necessarily translate to the pharmaceutical 

industry. They consider that the unique aspects that characterize the pharmaceutical industry 
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today - a predominance of batch processing with fewer opportunities for feedback control, 

necessary tight regulatory oversight, and multipurpose plants typically producing limited 

batches of a given product may still make the cost-benefit proposition less compelling and 

fraught with greater risk from a technical implementation and regulatory acceptance 

perspective. Therefore, the value proposition for the process control application is likely to be 

limited to instances where PAT is an integral part of the control strategy and its advance will 

closely mirror growth of such applications.5 

An alternate explanation for the limited utilization of PAT in manufacture is consistent 

with the risk-based approach to process development that is being adopted by industry today. 

It can be argued that, from the point of view of process knowledge, the risk to the process is 

highest in early development when the process is still not well understood. Extensive use of 

PAT at this phase is warranted to help develop understanding and mitigate this risk. The same 

can be said for PAT utilization during the initial scale-up phase. For processes that are scale-

dependent and require optimization, PAT is increasingly being used during scale-up for control, 

optimization, and to develop further understanding. The increased knowledge gained during 

this phase serves to obviate the need to use PAT in the commercial phase. As the process enters 

the commercial phase, development following the Quality by Design (QbD) paradigm should 

ensure that the process is well-understood, designed to be robust, and consistently produces 

material of high quality. The role of PAT at this phase would predominantly be for process 

knowledge to verify that the process is performing as expected and to support process 

robustness and continuous improvement.5 

In summary, the observed trends in the use of PAT during the various phases of 

industrial process development can be attributed to the value proposition of on-line monitoring 

throughout the different stages of the development. It is important to point out that in the 

manufacturing space this value proposition is a reflection of the state of technology, the existing 

regulatory landscape and the current role that PAT plays in the overall control strategy. 

Advances in these various areas, which are likely to occur in the coming years, will merit a 

periodic re-evaluation in the future.5 

 

2.2.1. Monitoring CPAs and CQAs during crystallization 

 

Development of PAT enabled continuous monitoring of key process variables. These 

technologies enable development of advanced control methods for the batch crystallization 

process. The main advantage of this approach, compared to the usual practice, is a constant 
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insight into the process state by measuring key process variables (concentration of dissolved 

substance, number of particles and particle size distribution, polymorphic form) and possibility 

of timely action in case of disturbances. Benefits of such approach have been recognized and 

stimulated by key regulatory agencies (e.g., the U.S. Food and Drug Administration) 6. A 

review of current research in the field of monitoring, modelling and control of batch 

crystallization is given in the paper by Nagy et al. 15.  

PAT methods are used for continuous monitoring of CPAs such as solute concentration, 

particle size, number and shape, and polymorphic form. Paper written by Simon et al.5 gave a 

comprehensive overview of PAT technologies and their applications. Book from Bakeev13 

gives an overview of spectroscopic PAT methods. Spectroscopic methods in combination with 

multivariate mathematical methods are used for real-time monitoring of solute concentration or 

polymorphism of crystallized particles. Particle shape, number and size distribution are 

monitored in real-time using methods based on laser beam scattering or image processing. Next 

chapters describe in detail recent PAT methods for monitoring solute concentration (as well as 

supersaturation and solubility), particle size distribution (as well as number and shape of 

particles) and polymorphism of crystalline particles. 

 

2.2.1.1. Concentration of solute (supersaturation) and polymorphism 

 

Solute concentration is one of the most important CPAs to monitor during the 

crystallization process. Knowing the solute concentration and solubility information for a given 

crystallization system, it is possible to monitor the supersaturation in process. Since 

supersaturation is the driving force of the crystallization mechanisms, nucleation and growth, 

based on information of current supersaturation it is possible to control the process in order to 

obtain product of satisfactory quality. Higher levels of supersaturation will lead to nucleation 

resulting in high number of small crystals. On the other hand, smaller level of supersaturation 

will favor the growth, resulting in smaller number of larger crystalline particles. On the other 

hand, polymorphism is a phenomenon when solid substances have the identical chemical 

structure, different internal structure. Result is the variation in physical and chemical properties, 

such as bioavailability and solubility, in different polymorphs. If crystal product can have 

different polymorphic forms, monitoring and control of polymorphic form becomes very 

important. This chapter presents PAT methods used for monitoring solute concentration and 

polymorphism in crystallization process. 
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One way to estimate a solute concentration is based on the measurement of the refractive 

index (RI) of the solution. The refractometer determines the change of speed of light when light 

travels from one medium to another. When the light passes from one medium to another, for 

example, air to water, the bending angle will change (Fig. 2.4.). The refractive index (nD) is 

defined as the speed of light in air divided by the speed of light in the medium according to 

Snell’s law, which states that the ratio of the sines of the angles of incidence and refraction is 

equivalent to the ratio of phase velocities in the two media, or equivalent to the opposite ratio 

of the indices of refraction. At present, in-line process refractometers have been proved to be 

accurate and reliable instruments for the sugar concentration measurements and measurement 

of other solute concentration as well. The RI measured by a DPR is not affected by the crystals 

and bubbles in the crystallizer and can be therefore properly used to estimate the mother liquor 

concentration (the dissolved matter) in the vacuum pan application. The mother liquor 

concentration signal can be used as an input parameter for the calculation of the supersaturation 

value in the vacuum pan.12 

 
Figure 2.4. Refraction of light (i: angle of incidence, r: angle of reflection) 12 

 

 Next method successfully applied to monitor the liquid phase concentration during 

crystallization processes is Attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopy. IR spectroscopy is used to determine energy differences between vibrational 

states of molecules in the solid, liquid, and gaseous phase. ATR-FTIR spectroscopy is based on 

absorption in the mid-infrared region, that is, a photon of infrared radiation of frequency νS is 

absorbed and the molecule is promoted to a higher vibrational state (Fig. 2.5.). For this 

absorption process to occur, the energy of the photon must match the separation of vibrational 
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states in the sample. The associated absorbance spectrum corresponds to the particular IR 

wavelengths, which are absorbed by the sample, thus revealing details about its molecular 

structure. In ATR spectroscopy, the measuring beam is reflected internally at the interface 

between an auxiliary medium and the sample. This auxiliary medium must be infrared 

transparent and of high refractive index. Since the penetration depth is only a few micrometers, 

typically in the order of the wavelength of the light and depending on the refractive indices, 

that is, 0.5–5 μm, the ATR technology can be used to measure exclusively the liquid phase of 

a crystal slurry without interference of the dispersed crystals. Fourier transform (FT) 

spectrometers have a number of advantages over dispersive instruments, that is, reduced 

measuring time and increased light throughput, hence a better signal-to-noise ratio. Basically, 

a FT spectrometer is a Michelson interferometer where the spectrum is reconstructed using a 

FT of the interference pattern of the measured sample. A FT instrument allows us to measure 

all wavelengths at once while in a dispersive instrument, a monochromatic beam changes its 

wavelength over time. Thus, the overall measuring time is shorter in a FT spectrometer as 

compared to a dispersive instrument.12 

 

 
Figure 2.5. Principle of IR absorption: (a) Quanta of energy hν impacts the molecule (L-

glutamic acid) resulting in elastic scattering or absorption; (b) energy level diagram: photon 

of frequency of νS is absorbed; and (c) simplified IR absorption spectrum 12 
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 Contrary to infrared spectroscopy, monochromatic light is used to irradiate a sample in 

Raman spectroscopy. The Raman effect is due to the inelastic scattering of incident light. If a 

light quantum or a photon with energy hv0 hits a molecule, light can be scattered elastically, that 

is, the scattered photon has the same energy, or inelastically, that is, the energy carried by the 

scattered photon has changed with respect to the incoming photon. The elastic scattering 

process has the highest probability and is known as Rayleigh scattering. However, at a lower 

probability also the inelastic, so-called Raman scattering process occurs and the resulting 

scattered energy quantum has an energy of hv0 ± hvS, where hvS is related to the molecular 

structure of the compound. The Raman scattered light is frequency shifted with respect to the 

excitation frequency to lower or to higher frequencies resulting in Stokes or anti-Stokes Raman 

scattering, respectively. The principle of Raman scattering is illustrated in Figure 10.1. At 

ambient temperature, most molecules are in their vibrational ground state. According to 

Boltzmann’s law, a much smaller number of molecules are in the vibrational excited state. 

Therefore, Raman scattering resulting in a quantum with lower energy hv0 - hvS has a higher 

probability than the reverse process, that is, emission of a quantum with higher energy 

corresponding to hv0 + hvS. Therefore, the Stokes signal has a higher intensity than the anti-

Stokes signal as illustrated in Fig 2.6. (at ambient temperatures). The Raman scattering effect 

is so feeble that only about one photon in every 1012 incident photons is scattered inelastically. 

However, the use of intense laser radiation and very efficient photomultiplier detectors make 

this technique viable. Typically, the lasers used in Raman spectrometers emit light in the near-

infrared range. Mostly, Raman spectrometers are equipped with conventional CCD detectors 

or employ Fourier transform to record the data. Raman spectroscopy can be applied off-line as 

well as in situ to monitor a wide variety of chemical processes. The Raman scattering signal 

emerges from both the liquid and solid phases (of course, also molecules in the gas phase may 

show Raman activity but due to the low density the signal is rather weak); hence, there are 

numerous factors influencing the signal, which makes the quantitative application of this 

technique more challenging. Using more advanced data analysis techniques, Raman 

spectroscopy can be employed to estimate the liquid- as well as the solid-phase composition in 

heterogeneous process such as crystallization.12 
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Figure 2.6. Principle of Raman scattering. (a) Quanta of energy hv0 hit the molecule (L-

glutamic acid) resulting in inelastic scattering; (b) energy level diagram: irradiation with 

light quanta hv0 may result in scattering of quanta, Stokes and anti-Stokes scattering; (c) 

simplified Raman spectrum, signal at v0 is due to Rayleigh scattering, signal at lower 

frequency (Stokes signal) has a higher intensity than the signal at higher frequency (anti-

Stokes signal) 12 

 

 Last spectroscopic method described in this chapter is ultra-violet (UV) spectroscopy. 

Recent technology advances allowed use of UV spectroscopy for on-line measurement and 

opened up a variety of new applications for both on-line UV and visible spectroscopy. These 

advances are high-quality UV-grade optical fiber, sensitive and affordable array detectors, and 

chemometrics. Non-solarizing (or at least solarization resistant) optical fibers make analyses at 

wavelengths shorter than 280 nm possible by fiber-optic spectroscopy. Prior to this 

improvement, optical fibers quickly developed color centers when exposed to intense UV 

radiation from either a deuterium lamp or a xenon flash lamp. The light transmitting ability of 

the fiber degraded quickly, often in a matter of a few minutes. Current optical fibers maintain 

their light transmission at or near that of a fresh fiber for months or years. The length of the 
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fiber run, nevertheless, must be kept fairly short if the analytical work is to be done in the deep 

UV range of 190–220 nm. This is due to the decreased transmission efficiency of the fibers at 

these wavelengths relative to those in the range of 220–280 nm. Fiber-optic probes built with 

non-solarizing fiber make possible in situ sampling of a process, at the same time allowing the 

detection equipment to be positioned safely away from the process hazards. The emergence of 

sensitive and affordable array detectors has also improved measurement capability in the UV-

vis. Commercially available UV-vis instrumentation with photodiode-array (PDA) detectors 

made it possible to produce a UV-vis spectrophotometer with no moving parts, with the 

exception of a shutter for the lamp. PDAs work well in high-light applications, such as 

absorption spectroscopy. Charge coupled device or CCD detectors offer improved sensitivity 

over the PDA and are two dimensional, rather than just line arrays. Front-illuminated CCDs 

may be used in the UV if they are coated by a chromophore that absorbs UV radiation and re-

emits the energy as a visible photon. Back-thinned CCDs directly sense UV photons and are 

about ten times more sensitive in the UV than a front-illuminated CCD or PDA. Finally, the 

development of chemometrics has also aided in the use of UV-vis technology for more 

complicated chemical matrices than was possible at earlier times. Chemometrics allows large 

quantities of spectral data to be analyzed and reduced to a useful bit of information such as the 

concentration of a chemical species. Contributions from overlapping absorption features may 

be separately analyzed to determine the concentrations of more than one chemical species. In 

addition, through analysis of residuals, it is possible to detect when something unexpected 

occurs in a process.13 

 

2.2.1.2. Particle number, shape, and size distribution 

 

Crystalline product coming out from crystallization process is characterized by its size 

distribution and shape of crystals. Size distribution can be expressed in different ways. The 

crystal size distribution (CSD) or particle size distribution (PSD) may, in fact, be referred to 

the number of crystals, the volume or the mass of crystals with reference to a specific size 

range, or the cumulative values of number, volume or mass of crystals up to a fixed crystal 

size. The first approach refers to a density distribution, whereas the second one to a 

cumulative size distribution. However, it is also useful to represent the PSD by means of a 

lumped parameter as an average size, the coefficient of variation, or other statistical 

parameters which may be adopted for the evaluation of a given commercial product. Although 

there are three geometric dimensions of crystals, the PSD is usually referred to just one 
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dimension which is related to the adopted measurement technique. In the case of crystal size 

measurement by sieving the characteristic dimension is the second one, corresponding to the 

wire mesh length. Otherwise, if a laser diffraction-based analyzer is used, the characteristic 

dimension is the length given by the instrument, falling between the first and the second 

crystal dimension. The calculation of characteristic sizes of the CSD does not necessarily 

requires to pass through the calculations of values of the crystals population density. The 

easiest way is to use directly the mass fraction of crystals measured by sieving. Often the 

mass fraction is represented by means of the histogram which is called the frequency 

histogram. Sequentially adding each segment of the frequency diagram gives the cumulative 

distribution in terms of the mass fraction. Examples of number and volume distributions are 

shown in Figure 2.7.12 

 

 
Figure 2.7. Cumulative and volume crystal size distributions 

(continuous line for the cumulative distribution and dotted 

lines for the density distribution). 12 

 

 PAT methods commonly used for measurement of the PSD are forward light scattering, 

focused beam reflectance measurement (FBRM), turbidimetry and imaging. Overview of these 
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methods is given in this chapter, while FBRM is described in detail in dedicated chapter since 

this method was used in presented research. 

 Instruments based on laser diffraction to determine the PSD have been developed in the 

last few decades. The first instruments measured the laser diffraction pattern with a series of 

semi-concentric ring detectors to record the low angle diffraction pattern in the forward 

direction. The measured axisymmetric diffraction pattern of all the rings represents then the 

signature of the crystal size distribution of the suspension. Diffraction pattern can be 

deconvoluted into the PSD using inversion technique based on Fraunhofer diffraction. Over the 

past few years laser diffraction instruments have been modified and improved. Detectors are 

not semi-concentric anymore, have much smaller dimension, and cover an angular sector only 

with a surface area that follows a logarithm progression from the center to the outside. Also, 

the measurement of the wide angle and backward scattering, the use of blue lasers, and the 

implementation of the more complete Mie scattering theory to describe the laser diffraction 

have contributed to extend the particle size range which can be covered in a single 

measurement. Laser diffraction is applied widely and has become the most used and the 

standard sizing technique. These instruments are easy to operate, offer a nondestructive way 

for fast measurement of the PSD, and produce reproducible results without the need for 

extensive calibrations procedures. The major drawback of forward light scattering instruments 

is that a low particle concentration is required to avoid multiple scattering effects, so mostly 

industrial crystal suspensions must be diluted before they can be analyzed by this method. This 

requirement limits the application of these instruments in situ in a process. Additional problem 

forms the sensitivity of the instruments for the shape of the particles. The instruments measure 

a projected area of the particles in a 2D plane, which in the case of non-spherical particles is 

dependent on the shape and the orientation of the particles in the measurement cell. A spherical 

equivalent diameter is then used for the sizing of the particles which gives rise to deviations 

from the true particle size. Application of laser diffraction to monitor the evolution of the PSD 

in industrial crystallization processes is rare and in industrial practice monitoring of the CSD is 

mostly realized by taking (dry) samples from the crystallizer followed by a PSD analysis in the 

laboratory.12 

Turbidimetric techniques have been long used for the determination of particle size in 

suspension. However, this technique is particularly suitable for very small particles from 

several nanometers to some tens of microns. For continuous monomodal particle distributions 

and widely separated bimodal distributions, specific turbidity, that is the turbidity per unit 

volume, may provide a correct location of the weight average size. Turbidimetry may be a 
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useful technique to measure the average size of a crystal sample. The measurement technique 

is more suitable for plant laboratory either for the not high accuracy or because of the need of 

a careful calibration procedure. The use of this technique can lead to quick measurements of 

the average size of the crystal population in a slurry. It is not required to dry the samples in 

order to apply the sieving technique, but the prerequisite is just the dilution of the withdrawn 

slurry sample with a saturated solution in order to merge the size range where the absorbance 

is a linear relationship of the suspension mass density.12 

 Real-time microscopy was proven to be a valuable alternative for PSD measurement 

tools as it does not suffer from problems which arise from particle shape deviating from ideal 

sphere. The direct observation of the particles makes the interpretation of the data intuitive. It 

is important to note that the size and shape of the crystals are obtained without additional 

assumptions of crystals’ shape or of their size distribution. In addition, the 2D crystal shape 

information obtained allows the characterization of both the size and the shape of the crystals 

in a single measurement, without extensive calibration procedures, simplifying the experiments 

and reducing the cost of the instrumentation. The shape information from the image analysis 

could be vital to monitor and control the type of polymorph or the polymorph transformation 

for chemical systems showing different crystal structures. Extraction of quantitative 

information from the images requires image segmentation. This means that the objects of 

interest need to be separated from the background. For this purpose, extensive techniques are 

needed to improve the image quality, perform background correction, improve the sharpness of 

the images correct for overlapping and boundary problems, and so on. The image analysis is 

well established, and a number of commercial instruments are available both for off-line and 

for in situ analysis. Most of the commercial instruments solve the segmentation problem by 

imaging the particulate slurry as it passes through a specially designed flow cell under 

controlled hydrodynamic and lighting conditions. Although these instruments are capable of 

delivering a size and shape distribution, they require sampling and sample pretreatment. Taking 

representative samples from particle suspensions is very difficult, time consuming, and 

problematic (not robust). There are also process sensors that allow for image analysis directly 

in the process. The application of in situ imaging for monitoring and control of crystallization 

processes however still suffers from problems with the segmentation. Due to varying 

background intensities, overlapping particles, and sharpness of the images, quantitative 

information from these sensors is still not very reliable and needs more development. Image 

analysis has become a powerful technique to monitor the development of the product quality in 

crystallization processes. Due to the improvements of the optics, the illumination system and 
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the high speed and high resolution camera systems that are available nowadays, the quality of 

the information has tremendously improved. Most importantly, this valuable information on the 

development of the size and the shape of the crystals becomes available in real-time during the 

crystallization process itself. In addition, apart from shape and size information, image analysis 

also gives information on different phenomena like dissolution/agglomeration which other CSD 

measurement techniques might not recognize. In situ imaging is a powerful tool for 

optimization the crystallization process. The application of this sensor for the model-based 

control of crystallization processes is in principle also possible but requires a robust estimation 

of the CSD and the shape distribution in real time. In practical situations this quantitative 

analysis has not been yet achieved due to limitations of the image quality, the low dynamic 

range of particle concentration that can be handled by the sensor, and a lack of robustness of 

the image analysis algorithms. More developments are needed in these areas.12 

 

 
Figure 2.8. General layout of an in-situ imaging system. 12 

 

2.2.1.3. Focused Beam Reflectance Measurement – FBRM 

 

FBRM is used to determine the number of particles or chord length distribution (CLD). 

In FBRM probe, a solid-state laser light source produces a continuous beam of monochromatic 

light that is focused to a small spot at a constant distance on the surface of the probe window. 
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A pneumatic or electrical motor is used to rotate the optics, such that the rotating, focused beam 

of laser light is constantly scanning over particles that are passing in front of the probe as shown 

in Figure 2.9. The suspended particles backscatter the laser light to the probe where the reflected 

light is detected. From the duration of the backscatter and the rotation velocity of the optics, the 

distance the beam has scanned over the particle surface, the so-called chord length, can be 

calculated. The resulting measurement is the chord length distribution. Clearly, the measured 

CLD is a function of the number, dimension, and shape of the particles in the suspension. Due 

to the random orientation of the suspended particles and the random location where the beam 

can scan each of these particles, PSD cannot be directly extracted from the CLD. Although 

many research efforts have been directed at the determination of the PSD from measured CLD, 

so far no generally applicable solution has been proposed.12 Heath et al. use theoretical and 

empirical relationships to calculate CSD.16 Li et al. have developed an empirical model that has 

a known CSD and measured CLD as model input variables, where the model inversion makes 

it possible to determine CSD from the measured CLD.17 Agimelen et al. propose an algorithm 

for estimating the size and shape of needle-like particles from experimental CLD data using a 

two-dimensional geometric model.18 Petrak et al. elaborated a statistical method that 

determined the particle shape from the measured CLD.19 There are also methods that combine 

FBRM with image analysis. A similar method is suggested by Agimelen et al. for estimating 

particle size and shape.20 Pandit and Ranade in their paper presented a mathematical model for 

a single particle that should simplify conversion of CLD into CSD.21 Irizarry et al. propose a 

model and method of modelling which predicts a one-dimensional and two-dimensional CSD 

based on the measured CLD.22 For industrial purposes it is therefore recommended to use the 

real-time CLD data directly as “fingerprint” of the process which is highly sensitive to changes 

in number and particle dimension, instead of extracting an accurate PSD out of the CLD data.12 
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Figure 2.9. (a) Scheme of the FBRM probe. Particles in suspension backscatter the laser light 

emitted by the probe. (b) The number of particles and their scanned dimensions are recorded 

as the chord length distribution. 12 

 

FBRM has proven application for automated determination of two fundamental 

parameters of a crystallization process, solubility information and metastable zone width 

(MSZW) determination. Although a simple turbidity probe can be used as well for such a task, 

the CLD data yield additional information regarding the relative nucleation and growth kinetics 

of the studied system, which is not revealed by the turbidity data. FBRM is also used to study 

the efficiency of a seeding event and to quantify the effectiveness of the seed material. Without 

in situ analytical tool, it is difficult to evaluate seed effectiveness before the process end. Next 

use of FBRM is for monitoring polymorph transformation. Different polymorphic forms of a 

given molecule often exhibit a significantly different crystal shape. In such cases optical in situ 

measurement techniques such as FBRM or inline microscopy can be used to monitor a 

polymorph transformation that can occur during the course of a crystallization process, although 

such optical techniques do not contain any information about the structure of the crystal lattice. 

The sensitivity of FBRM to nucleation events has also been used to understand the 

crystallization of diastereomers, permitting the identification and minimization of secondary 

nucleation, and consequently, minimization of the undesired diastereomer, thus increasing 

product quality and reducing cycle times. Changing raw materials for a crystallization process 

can result in varying levels of impurities, which in turn may dramatically affect the 

thermodynamics, as well as the crystal growth and nucleation kinetics in the system. FBRM 

was used to study the impact of specific impurities on crystallization kinetics. FBRM was used 

to monitor the relative growth and nucleation rates at different impurity levels and allowed the 
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determination of the impact of these impurities on cycle times and yield. Besides the relative 

determination of particle formation kinetics, FBRM has been used to determine nucleation 

kinetics in a first-principles approach, by accurate induction time measurements as a function 

of supersaturation. The combination of ATR-FTIR spectroscopy and FBRM allowed for precise 

determination of the induction time, that is, the time span between attainment of a homogeneous 

supersaturation level throughout the reactor and the detection of particle formation. Average 

particle size, particle shape, and size distribution width have a significant impact on the different 

unit operations in downstream processing, that is, filtration, washing, and drying. FBRM can 

be used to optimize a crystallization process with the objective of minimizing filtration and 

drying times and the facilitation of powder handling. In these cases, the median of the CLD 

(with no weighting) is used as an indication of the amount of fines present, which are in turn 

directly related to the filterability. The implementation of the FBRM in control loop of 

crystallization can be based either on the supersaturation level of the liquid phase, the direct 

control of the solid phase, or a combination of both. The main advantage of combining the 

characterization of liquid and solid phase, quantifying the supersaturation in the liquid phase 

using ATR-FTIR and the particulate product via FBRM, is a lower sensitivity to process 

disturbances, changing thermodynamics, or kinetics with respect to the traditional fixed batch 

recipe approach. A second advantage with respect to process control schemes based on first 

principle kinetics is that minimal a priori information is required and a time-consuming kinetics 

determination is not needed. Although such a control approach might produce increased 

variation of process parameters, it has potential to minimize variations of important product 

quality attributes, that is, particle size, size distribution, and purity.12 

 One main advantage of FBRM is its high statistical robustness, with the measurement 

counting up to several hundreds of thousands of particles per second, depending on suspension 

density and particle size. Besides, the measurement principle is not affected by any assumptions 

about particle shape, like for example in the case of laser diffraction. A morphology change, 

which can be due to a polymorph transformation, is therefore directly captured in the CLD data. 

Moreover, FBRM can be used in a wide range of process conditions, both in terms of 

temperature and pressure and in terms of solid concentration. In principle, there is no upper 

limit of suspension density that can be measured through FBRM. However, at high suspension 

densities the measured CLDs do not correlate with particle concentration in a linear way. 

Finally, FBRM is a count-based technique, which makes the measurement particularly sensitive 

to fine particles, and it is therefore particularly suited to monitor events like nucleation, 

breakage, and dissolution which can have a major impact on the final product quality. 
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Consequently, FBRM technology can be considered as a process characterization and 

optimization tool, suitable for monitoring the particle system dynamics in terms of rate and 

degree of change of particle number and dimension. This allows the user to understand and 

quantify the impact of different process parameters on the particulate product. Besides the 

mentioned difficulties in determining the PSD from the measured CLD, other effects may limit 

the application of the FBRM. The measured CLD can be influenced by the stirring conditions 

in the crystallizer and the flow field around the probe. Also, the size, shape, and number of 

particles in the suspension can affect the CLD. The most important limitation though is in 

dealing with transparent particles, where no backscattering or chord splitting may occur. In such 

cases, the optical properties of the solid material play a decisive role and may limit the 

application of FBRM.12 

 

2.2.2. Crystallization process control based on PAT 

 

The control of solution crystallization processes has recently become very interesting 

scientific field. Main motivation for that are advances of in-situ real-time sensor technology 

such as ATR-FTIR spectrometry and laser backscattering probes that could provide much richer 

data sets suitable for crystallization modeling and control became commercially available; 

computers and control hardware became faster, which enabled the application of population 

balance modeling and the investigation and implementation of advanced techniques for systems 

and control; manufacturing drug crystals of higher consistency and quality became more 

important, and several pharmaceutical companies and governments were willing to invest in 

research programs to develop improved methods for crystallizer control.23 

It was recognized that prior model-based optimal control formulations for solution 

crystallization processes in the literature had problems that limited their applicability: 

 usually the optimization variable for seeded batch crystallizations in the earlier studies 

was the temperature profile, whereas the characteristics of the seed crystals were 

ignored even though they have at least as strong of an effect on the product crystal 

properties as the temperature profile, 

 the most commonly used optimization objectives were the minimization of the 

coefficient of variation and the maximization of the weight-mean size of the product 

crystals. These objectives could produce large numbers of small crystals that could 

cause downstream filtration problems and could lead to operations that are highly 

sensitive to model uncertainties, 
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 uncertainties in crystallization kinetics and the effects of disturbances were nearly 

always ignored, although all of the benefits to product quality owing to optimization 

could be lost if uncertainties and disturbances were not taken into account, 

 optimal control strategies designed to minimize nucleation did not explicitly consider a 

key operational constraint, namely that the supersaturation should be less than the 

metastable limit, which is the supersaturation in which excessive nucleation occurs. 

Because the metastable limit information was included only indirectly through the 

specification of the nucleation kinetics, the above formulation limitations took much 

longer to notice. 23 

Continuous measurement of the CPAs has enabled model free continuous control of the 

batch crystallization process. The first proposed method was maintaining a constant 

supersaturation in the solution. Information on solute concentration is obtained by combining 

spectroscopic methods and chemometric models. Instantaneous supersaturation can be 

determined by knowing the crystallization system solubility curve and current solute 

concentration. Therefore, by adjusting the temperature it is possible to direct the supersaturation 

(supersaturation control, SSC) towards the desired value and maintain it (Fig. 2.10.). The 

control method for cooling batch crystallization was investigated by Gron et al.24 and Liotta 

and Sabesan25. Zhou et al. investigated SSC for the anti-solvent batch crystallization 26.  

The development of the FBRM and real-time imaging methods enabled measurement of 

number of particles in a system and the CLD, which made a development of dynamic nucleation 

control (DNC) possible. The assumption of this method is that, with the maintenance of a 

constant number of particles and the reduction of the supersaturation in process, the primary 

mechanism of crystallization is the growth of existing particles and, to a lesser extent, the 

emergence of new nuclei (Fig. 2.11.). The method is presented in papers by Abu Bakar et al. 27, 

Eisenschmidt et al. 28, Wu and Wu 29. Saleemi et al. compared SSC and DNC batch 

crystallization methods. 30  

Raman spectroscopy enabled monitoring of the polymorphic form of the crystallizing 

substance. The proposed active polymorphic feedback control (APFC) is based on dissolution 

of the crystallized particles until the unwanted polymorphic form disappears. This type of 

control is investigated by Simone et al.31 In the papers by Griffin et al. an alternative method of 

visualization of the crystallization process was implemented and SSC and DNC methods were 

applied. In addition to these methods, a method based on the model developed from data 

measured on real processes was also proposed.32, 33, 34 
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Figure 2.10. Supersaturation control approach (Abbreviations: C-concentration, Csol-

saturation concentration (solubility); j - jacket; S - absolute supersaturation; SP - set point; T 

- temperature; t - time. 23 

 

 
Figure 2.11. Direct nucleation control (Abbreviations: j - jacket; SP - set point; T - 

temperature; t - time) 23 

 

2.3. Development of calibration models 

 

In PAT methods calibration models are needed for extracting the valuable process 

information from the analytical instrument measurements (e.g. solute concentration can be 

extracted from the ATR-FTIR spectrum and temperature using the correct calibration model).  

Chemometrics is the field explaining the development and application of calibration models. 

The term chemometrics was coined several decades ago to describe a new way of 

analyzing chemical data, in which elements of both statistical and chemical thinking are 

combined. Three elements of chemometric applications are: empirical modeling, multivariate 

modeling and chemical data. The empirical modeling element indicates an increased emphasis 

on data-driven rather than theory-driven modeling of data. This is not to say that appropriate 
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theories and prior chemical knowledge are ignored in chemometrics, but that they are not relied 

upon completely to model the data. During the development of chemometric calibration model 

for a process analyzer, one is likely to use prior knowledge or theoretical relations of some sort 

regarding the chemistry of the sample or the physics of the analyzer. The multivariate element 

of chemometrics indicates that more than one response variable of the analyzer is used to build 

a model. This is often done out of necessity because no single response variable from the 

analyzer has sufficient selectivity to monitor a specific property without experiencing 

interferences from other properties. The combination of empirical and multivariate modeling 

elements makes chemometrics both very powerful and very dangerous. The power of 

chemometrics is that it can be used to model systems that are both largely unknown and 

complex. Furthermore, these models are not restricted by theoretical constraints – which can be 

a big advantage if large deviations from theoretical behavior are known to be present in a 

system. However, most empirical modeling techniques need to be fed large amounts of good 

data. Furthermore, empirical models can be safely applied only to conditions that were 

represented in the data used to develop the model (i.e. extrapolation of the model usually results 

in large errors). The use of multiple response variables to build models results in the temptation 

to overfit models, and obtain artificially optimistic results. Finally, multivariate models are 

usually much more difficult to explain, especially without good knowledge of math and 

statistics.13 

Important chemometric techniques are linear regression and multiple linear regression 

(MLR). Linear regression is typically used to build a linear model that relates an independent 

variable to a dependent variable. For example, one could make a set of observations of the 

integrated area of a specific peak in an on-line chromatograph for a set of N samples, and a 

corresponding set of observations of an analyte concentration obtained from an off-line wet 

chemistry method, for the same set of N samples. With this data, one can then use linear 

regression to develop a predictive model that can be used to estimate the analyte concentration 

from the integrated peak area of an unknown sample. An extension of linear regression, MLR 

involves the use of more than one independent variable. Such a technique can be very effective 

if it is suspected that the information contained in a single independent variable is insufficient 

to explain the variation in the dependent variable. For example, it is suspected that a single 

integrated absorbance of the NIR water band at 1920 nm is insufficient to provide accurate 

concentrations of water contents in process samples. In such cases, it is necessary to use more 

than one band in the spectrum to build an effective calibration model, so that the effects of such 

interferences can be compensated. Usually, raw data from analytical instruments needs to be 
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treated by one or more operations before optimal results can be obtained from chemometric 

modeling methods. Although such pre-treatments often result in improved model performance, 

it is critically important to understand the inherent assumptions of these pretreatment methods 

to use them optimally. Most often used data pre-treatment methods are: 

 Mean-centering, subtraction of each variable’s response from the mean response of that 

variable over all of the samples in the data set. This operation effectively removes the 

absolute intensity information from each of the variables, thus enabling one to focus on 

the response variations. This can effectively reduce the burden on chemometric 

modeling techniques by allowing them to focus on explaining variability in the data.  

 Autoscaling, a variable-wise pre-treatment that consists of mean-centering followed by 

division of the resulting intensities by the variable’s standard deviation. In autoscaled 

data each of the variables has a zero mean and a standard deviation of one. Autoscaling 

removes absolute intensity information, but it also removes total variance information 

in each of the variables. It effectively puts each of the variables on equal footing before 

modeling is done. Autoscaling is often necessary in cases when the independent 

variables come from different types of instruments, or when the units of measurement 

are not the same for all the variables. In such cases, if autoscaling is not done, the 

variables with the largest absolute range will tend to dominate in the modeling process, 

and those with the lowest absolute range will tend to be ignored.  

 Derivatives, used to remove offset and background slope variations between samples 

for data in which the variables are expressed as a continuous physical property (e.g. 

spectroscopy data). This operation involves the mathematical derivation of a function 

where this function is simply the spectrum of a single sample over a range of 

wavelengths or wavenumbers. However, when data is in a digitized form, a discrete 

form of derivation functions, called Savitsky-Golay filters, can be used to calculate 

derivatives. These filters are essentially local functions that are applied to each spectrum 

in a moving-window manner across the wavelength/wavenumber axis, in order to 

evaluate the derivative at each wavelength/wavenumber. In spectroscopy applications, 

a first derivative effectively removes baseline offset variations in the spectral profiles. 

As a result, first derivatives can be very effective in many spectroscopy applications, 

where spectral baseline offset shifts between samples are rather common. Second 

derivative pre-treatment results in the removal of both baseline offset differences 

between spectra and differences in baseline slopes between spectra.  
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 Application-specific scaling, prior knowledge regarding the variables used in an 

application can be used to provide custom scaling. For example, if the nominal signal-

to-noise ratio (S/N) for each of the variables is known beforehand, then the variables 

could be scaled to their S/N before modelling, so that the variables with the best S/N 

can be given more influence during the modelling process. Other knowledge that can be 

used for such custom scaling includes prior perception or theoretical estimation of each 

variable’s importance in the analysis, or information regarding the financial cost for 

obtaining data for each specific variable. 

 Multiplicative signal correction (MSC) used when there are multiplicative variations 

between sample response profiles. In spectroscopy, such variations can be caused by 

differences in sample pathlength. It is important to note that multiplicative variations 

cannot be removed by derivatives, mean-centering, or variable-wise scaling.  

 Standard normal variate (SNV), method performs both an additive and a multiplicative 

adjustment. For each sample’s spectrum, the offset adjustment is simply the mean of the 

values over all of the variables, and the multiplicative adjustment is simply the standard 

deviation of the values over all of the variables. The SNV method is performed on one 

spectrum at a time and does not require the use of a reference spectrum. 

Empirical multivariate modeling often requires a very large amount of data. These data can 

contain a very large number of samples, a very large number of variables or both. The presence 

of such a large number of variables presents both logistical and mathematical issues when 

working with multivariate data. From a logistical standpoint, a compressed representation of 

the data takes up less data storage space and can be more quickly moved via hard-wired or 

wireless communication. A mathematical advantage of data compression is that it can be used 

to reduce unwanted, redundant, or irrelevant information in the data, thus enabling subsequent 

modeling techniques to perform more efficiently. Data compression is the process of reducing 

data into a representation that uses fewer variables, yet still expresses most of its information. 
13 

 When developing quantitative chemometric models the goal is to build a model that 

converts values generated by an analytical instrument into values of properties or 

concentrations of interest for use in process control, quality control, industrial hygiene, safety, 

or other value-adding purposes. There are several chemometric techniques that can be used to 

build quantitative models, each of which has distinct advantages and disadvantages. The most 

commonly used methods are inverse multiple linear regression, classical least squares, principal 

component regression, partial least squares regression and artificial neural networks.13 In this 
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dissertation, partial least squares regression and artificial neural networks are used for 

development of quantitative calibration models and are explained in detail in following 

chapters. When developing quantitative models, it is important to avoid overfitting a model. 

Overfit model results with problems that are detrimental to any process analytical application. 

An overfit model has two distinct disadvantages over a properly fit model: 

 It contains more of the noise from the analyzer and reference data. 

 It is more specific to the exact data used to build it. 

As a result, when the model is used in practice, it is much more sensitive to any condition that 

deviates from the conditions used to build the model. In process analytical applications, where 

there is significant error in the analyzer and reference data anyway, the second disadvantage is 

usually the most visible one. A less tempting, but nonetheless dangerous alternative, is to under-

fit a model. In this case, the model is not sufficiently complex to account for interfering effects 

in the analyzer data. As a result, the model can provide inaccurate results even in cases where 

it is applied to conditions that were used to build it. The most commonly used tools for avoiding 

overfitting or under-fitting are model validation techniques. The goal of such techniques is to 

assess the performance of the model when it is applied to data that were not used to build it. In 

external validation, a model is tested using data that were not used to build the model. This type 

of validation is the most intuitively straightforward of the validation techniques. If the external 

samples are sufficiently representative of the samples that will be applied to the model during 

its operation, then this technique can be used to provide a reasonable assessment of the model’s 

prediction performance on future samples, as well as to provide a good assessment of the 

optimal complexity of the model. In order to assess the optimal complexity of a model, the 

statistics for a series of different models with different complexity can be compared. Although 

external validation is probably the most rigorous of model validation techniques, it has several 

disadvantages. First of all, the external samples must be sufficiently representative of samples 

that the model will be applied to in the future. Otherwise, external validation can provide 

misleading results – in either the optimistic or pessimistic direction. This often means that a 

large number of external samples must be used, so that they can cover a sufficiently wide range 

of sample compositions that the model will experience during its operation. Under-representing 

these sample states in the validation set could result in overly optimistic validation results, and 

the use of sample states that are not represented in the calibration data can result in overly 

pessimistic validation results. There is also a practical disadvantage of the external validation 

method. It requires that the reference analytical method be performed on an additional set of 

samples, namely the external validation samples. Considering the possible high cost of the 
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reference analytical method, and the possibility of requiring a large number of external samples 

to provide sufficient representation of the calibration samples, this disadvantage can be rather 

costly. In contrast to external validation, internal validation involves the use of the calibration 

data only and does not require the collection and preparation of additional validation samples. 

Probably the most common internal validation method, cross-validation, involves the execution 

of one or more internal validation procedures, where each procedure involves the removal of a 

part of the calibration data, use of the remaining calibration data to build a subset calibration 

model, and subsequent application of the removed data to the subset calibration model. The 

same data are not used for model building and model testing for each of the sub-validations. As 

a result, they can provide more realistic estimates of a model’s prediction performance, as well 

as better assessments of the optimal complexity of a model. There are several types of cross-

validation that are typically encountered in chemometrics software packages: 

 Selected subset cross-validation: a single sub-validation is done, where a manually 

selected subset of the calibration data is removed. 

 Leave-one-out cross-validation: a series of N sub-validations are done, where each 

sample in the calibration data is removed. 

 Random cross-validation: a pre-specified number of sub-validations are done, where a 

random selection of a pre-specified number of samples are removed from the calibration 

data. 

 Block-wise cross-validation: a pre-specified number of sub-validations are done, for 

each of which a contiguous block of a pre-specified number of calibration samples are 

removed. 

 Alternating sample cross-validation: a pre-specified number of internal validation 

procedures are done  

Although all of these cross-validation methods can be used effectively, there could be an 

optimal method for a given application. The factors that most often influence the optimal cross-

validation method are the design of the calibration experiment, the order of the samples in the 

calibration data set, and the total number of calibration samples. In all cases, there are two 

possible problems when setting up a cross- validation experiment: 

 The ill-conditioned sub-validation: This occurs when the selected subset of validation 

samples for a particular sub-validation is not representative of the samples in the rest of 

the data (which are used for modeling). 
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 The replicate sample: This occurs when replicates of the same physical sample are 

present in both the selected subset of validation samples and the rest of the samples.13 

Outliers can be defined as any observation that does not fit a pattern. In a typical 

quantitative calibration problem, three different types of outliers exist: 

 X-sample outlier – a sample that has an extreme analytical (spectral) profile. 

 Y-sample outlier – a sample that has an extreme value of the property of interest. 

 X-variable outlier – a predictor variable that behaves quite differently than the rest of 

the predictor variables. 

It is very important to note that the term outlier does not imply incorrect. An outlier could be 

caused by an error or an incorrect action, but it could just as easily be caused by a real 

phenomenon that is relevant to the problem. Outliers demand special attention in chemometrics 

for several different reasons. In calibration data, their extremeness often gives them an unduly 

high influence in the calculation of the calibration model. Therefore, if they represent erroneous 

readings, then they will add disproportionately more error to the calibration model. Even if they 

represent informative data, it might be determined that this specific information does not need 

to be included in the model. Outliers are also very important when one is applying a model 

because they can be used to indicate whether the model is being applied to an inappropriate 

sample. The fact that not all outliers are erroneous leads to the following suggested practice of 

handling outliers in calibration data: detect, assess, and remove (if appropriate). In principle, 

this is the appropriate way to handle all outliers in a data set. In practice, however, there could 

be hundreds of calibration samples and thousands of X-variables. In such a case, individual 

detection and assessment of all outliers could be a rather time-consuming process. However, it 

is one of the most important processes in model development The most obvious outliers in a 

calibration data set can be detected by simply plotting the data in various formats. Assessment 

of the outlier can be based on prior knowledge of the process, sample chemistry, or analyzer 

hardware. X-sample outliers and X-variable outliers can be detected by simply overlaying a 

series of analytical profiles. In a similar manner, Y-sample outliers can also be detected by 

simply plotting the Y-values for all samples in the data set as a function of sample number, or 

as a histogram. The histogram format allows one to detect samples that have Y-values that are 

very different from those of the rest of the samples. The Y-value-versus-sample number plot is 

meaningful only if the samples are arranged in a specific order (e.g. by time). If the samples are 

arranged by time, then one can check for Y-values that do not follow an expected time trend. 

Assessment of such Y-sample outliers can involve use of production records for the samples, 
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the reference analytical records for the samples, and prior knowledge of the standard deviation 

of the reference method. It is advantageous to first screen the data for such strong outliers before 

using it for any chemometric modeling method. If such outliers are not removed, they will 

strongly influence the modeling procedure, thus producing strongly skewed or confusing 

results. They will ultimately need to be addressed at some point anyway, so it is best to get to 

them as early as possible. In modern process analytical instruments, where response noise and 

reproducibility have been greatly improved, it is quite possible to encounter outliers that are not 

easily visible by plotting the raw data. These outliers could involve single variables or samples 

that have relatively small deviations from the rest of the data, or they could involve sets of 

variables or sets of samples that have a unique multivariate pattern. In either case, these outliers, 

if they represent unwanted or erroneous phenomena, can have a negative impact on the 

calibration model. For such outliers, detection and assessment can actually be accomplished 

using some of the modeling tools themselves.13 In this dissertation, the use of principal 

components analysis (PCA) for outlier detection is discussed in the following chapters. 

 Once a chemometric model is built, and it is used to produce concentration or property 

values in real time from on-line analyzer profiles, the detection of outliers is a particularly 

critical task. This is the case for two reasons: 

 Empirical models must not be applied to samples that were not represented in the 

calibration data. 

 Application of empirical models to inappropriate samples can produce plausible, yet 

highly inaccurate results. 

As a result, it is very important to evaluate process samples in real time for their appropriateness 

of use with the empirical model. Such real-time evaluation of process samples can be done by 

developing a PCA model of the calibration data, and then using this model in real time to 

generate prediction residuals and leverages for each sample.13 

Regardless of the problem, and the specific chemometric tools that used, there are three 

guiding principles that should always be kept in mind: 

 When building a method for on-line use, it should be as simple as possible.  

 Relevant analyzer response space should be covered as much as possible in calibration 

data. If this cannot be achieved, then the limitations in calibration data need to be known. 

 Regardless of background, both chemical and statistical thinking should be used: 

o Prior knowledge should be used for initial model set up (parameters); 
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o Collected data should be used to adjust the model to get the best description of 

function between dependent variables and independent variables.13 

 

2.3.1. Principal Component Analysis – PCA 

 

The principal components analysis is based on the application of linear algebra. The 

method was developed by Pearson (1901) and Hotelling (1933).35, 36 Pearson characterized it 

as an orthogonal linear projection with the least error. The primary application of PCA method 

is for the reduction of the dimensionality in data and evaluation of importance of particular 

variables.4, 37 Each measured sample can be represented as a point in multidimensional space. 

Figure 2.12. shows the case for samples with three variables with associated vectors X, in order 

to show the principle in three-dimensional space, but realistically this space can contain a few 

thousand dependent variables. 

 

 
Figure 2.12. PCA projection in a 3-D space (blue points are below PC-1 – PC-2 plane, red 

points are above PC-1 – PC-2 plane)37 

 

In the given example, goal of PCA is to find vectors in the space of 3 variables for which the 

distance between data-points (i.e. data dispersion) is greatest. This is achieved by searching for 

linear combinations of initial values of variables that contribute the most to the variance or 

difference in the dataset. The calculation takes place according to the equation: 
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𝑋 = 𝑇 𝑃𝑇 +  𝐸     (X.YY1) 

where X is a matrix of input data, T is a matrix of factor scores, P is a matrix of loadings and E 

is a matrix of errors or residuals in the total variance. The resulting vectors are called principal 

eigenvectors or principal components. The calculation process is iterative in such a way that 

the first component (PC-1) carries the most information, i.e. the largest share of the described 

variance. The next main component (PC-2) is orthogonal to the first, the third to the second, 

and so on. Each subsequent principal component will be describing smaller share of the total 

variance. Each of the principal components is characterized by four values: factor scores, 

loadings, residuals and leverage value. 37, 38 

As shown in Figure 2.13., the factor scores are the distances of the sample data-points 

from the mean point of the whole set per vector of the principal component. The factor score 

for particular sample describes its characteristic in relation to variables that have more 

significant loadings for the same principal component. A graphical representation of the factor 

scores of the principal components will be a two-dimensional surface where each of the axes 

represents one principal component. 

 

 
Figure 2.13. Schematic representation of factor scores 37 

 

Loadings describe the contribution of variables in a dataset and their cross-correlation. Each 

principal component has its own set of loadings for a given set of variables. Geometrically, 

loading is the cosine of the angle between the variable and the principal component. Smaller 
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angle will characterize greater value of the loading and vice versa. Values of loadings can be in 

range between -1 and +1. Figure 2.14. shows the relationship between variables and principal 

components. In the case of variables X1 and X2 lying on the vectors PC-1 and PC-2, the cosine 

of the angle will be equal to 1, which means that variable X1 is fully described by the first 

principal component and variable X2 by the second principal component. The angle between 

variables X1 and X2 is 90°, which results in cosine equal to zero, meaning these variables are 

not correlated with each other. The angle between variable X3 and PC-1 is greater than 180° 

and between X3 and PC-2 greater than 90°, which means that variable X3 is negatively correlated 

with PC-1 and PC-2. Variable X4 stands at the intersection of PC-1 and PC-2 and is therefore 

not well described with any of the major components. 

 
Figure 2.14. Schematic representation of loadings on PC-1 – PC-2 plane 37 

 

The next characteristic of the principal components are the residuals. As shown in 

Figure 2.15., data-points in the PC-1 – PC-2 space are orthogonal projections of the original 

values onto the plane. The residual of each sample is the distance of each data-point from the 

plane formed by the principal components. They represent the rest of the variance that will be 

in the error matrix of the PCA model. A higher value of the residuals means that the PCA model 

is less accurately describing data. High-impact samples, i.e. samples that have a high leverage 

value, can significantly affect the quality of the PCA model. The leverage value is the Euclidean 

distance of the data-point from the origin on the surface made up of the principal components. 

These two parameters can help identify data-points (samples) that represent boundary and/or 

atypical values. Such data-points are called outliers. The problem is the fact that two data-
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points, depending on the distribution of the total dataset on the PC-1 – PC-2 plane, may have 

the same Euclidean distance from the origin, but not necessarily are both points outliers. 

Therefore, instead of the leverage value more often is used Hotelling T2 distance, also called 

the Mahalanobis distance. Advantage of Hotelling T2 distance is that it takes into the account 

correlation of the principal components.39 

 
Figure 2.15. Schematic representation of residual and leverage values on PC-1 – PC-2 plane 

37 

 

PCA finds its application in a wide range of disciplines, from spectroscopic data analysis 

to face recognition technique. In the case of spectroscopic data, it can be used for the evaluation 

of spectrum set quality,40 estimation of reaction duration,41 or an identification analysis 

(differentiating coffee types based on the NIR spectrum).42 

 

2.3.2. Partial Least Squares Regression – PLSR 

 

The aim of the PLSR method is to determine the property of system Y (e.g. particle size 

distribution) from experimentally measured X predictors (for example, the chord length 

distribution of the samples with known particle size distribution) where X and Y are correlated 

with the calibration function b according to the expression: 

𝑌 = 𝑋 𝑏     (X.YZ1) 
The solution of the above expression is given by the following expression: 

𝑏 = (𝑋𝑇  𝑋)−1 𝑋𝑇  𝑌     (X.YZ2) 
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Regression involves inversion of dispersion matrix (XT X). The PLSR method takes into the 

account the variance of predictor matrix X and response matrix Y. In its basic form, PLSR is 

applicable to a single Y variable (PLS1) and is not iterative. The algorithm can be applied to 

modeling more Y variables (PLS2) with minor modifications. PLSR uses latent variables. The 

calculation of model components or factors (similar to principal components in PCA) in PLSR 

takes into account both X and Y matrices and looks for the factors from X which are also relevant 

for Y. The results are shown as T and U factor scores and P and Q loadings. T factor scores are 

new coordinates of data-points in the X space calculated by capturing the part of the data 

structure that most accurately describes the variable Y. Factor scores U summarize the part of 

the data in Y that is explained with X for a given factor. The ratio between T and U shows the 

ratio between X and Y for a given factor. P loadings show the correlation of each X variable 

with a single factor in the same way as in the PCA method. Q loadings show the direct 

relationship between Y variables and T factor scores.3, 43 

The first step of the method is calibration. If NIPALS (Nonlinear Iterative Partial Least 

Squares) decomposition iterative algorithm is used, first step is finding the largest eigenvector 

of the matrix S according to the expression: 

𝑆 = 𝑋𝑇  𝑌     (X.YZ3) 
The eigenvector contains information about both matrices and their covariance. This 

eigenvector is also called the loading vector and shows how will T factor scores be calculated 

from the matrix X in order to achieve the condition of orthogonal decomposition. P and Q 

loading are then calculated by regression of T factor scores. Factor scores U are calculated from 

the Q loadings. After the first iteration, the obtained values are subtracted from the X and Y 

matrices in order to obtain the matrices E and F. The procedure is continued by searching for 

the following eigenvectors ET F and iteratively until the maximum of the function is reached: 

𝑢 = 𝑓(𝑡)     (X.YZ4) 

PLS regression model, similar to PCA model, is given in the following expressions: 

𝑋 = 𝑇 𝑃𝑇 + 𝐸     (X.YZ5) 

𝑌 = 𝑈 𝑄𝑇 + 𝐹     (X.YZ6) 

The regression coefficients calculated according to expression X.YZ2 show the weight given 

to each X variable when predicting the Y response for each of the factors. The applicability of 

developed PLSR model for calibration is observed through the residuals. Residuals are 

calculated in the same way as in the PCA, but in this case represent the difference between the 

actual and the predicted Y response. Thus, the sum of squared errors (SSE) is the squared sum 
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of the residual values. The root mean square error of estimation (RMSEE) is then calculated 

according to the expression: 

𝑅𝑀𝑆𝐸𝐸 = √
1

𝑀−𝑅−1
 𝑆𝑆𝐸    (X.YZ7) 

where M is the number of calibration samples, and R is number of PLSR model factors. Besides 

RMSEE, another important parameter that indicates the quality of the calibration model is the 

coefficient of determination, R2, which represents the percentage of variance in Y responses 

reproduced by regression. Closer the estimated responses are to the actual values, greater is the 

significance of the PLSR factor for a given component, i.e. coefficient of determination gets 

closer to 100%. Leverage value, hi represents impact of the particular sample on the model, 

similar to the PCA method. The values of hi are always less than 1. The sum of hi of all samples 

will be equal to the number of model factors. Similar to the PCA, PLSR uses hi and Mahalanobis 

distance for outlier detection, i.e. samples that significantly affect model quality. 

The next step in development of a calibration model is its validation. Model validation 

can be performed in two different ways. The first is test-set validation, where part of the total 

set of samples is used for calibration model development and the second part for model 

validation. The second way is cross-validation, where one or more samples are excluded from 

the total set of samples. Calibration model is developed on the rest of the samples, and then 

validated on the excluded sample(s). The procedure is iterative until all particular samples or 

groups of samples have been used for validation. In the case of test-set validation the value that 

shows how well the values predicted by model agree with actual values is root mean square 

error of prediction (RMSEP). RMSEP is calculated according to the equation: 

𝑅𝑀𝑆𝐸𝑃 = √
1

𝑀
∑(𝐷𝑖𝑓𝑓𝑒𝑟)2    (X.YZ8) 

where M is the number of validation samples and Differ is the difference between the 

predicted and actual Y responses. In case of cross-validation the value that shows how well 

the values predicted by model agree with actual values is root mean square error of cross 

validation (RMSECV). RMSECV is calculated in the same way as RMSEP, but the final value 

is the average of all cross-validation iterations. In both cases, the coefficient of determination, 

R2 will be the second quality indicator for the developed model. The most important 

parameter of the PLSR calibration model is the number of factors, i.e. PLS vectors necessary 

to achieve the minimum value of RMSEP or RMSECV and the maximum value of R2. 4, 43 

 

2.3.3. Artificial Neural Networks – ANN 
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Artificial neural networks (ANN) are being increasingly applied to the development and 

application of quantitative prediction models. ANNs simulate the parallel processing 

capabilities of the human brain, where a series of processing units are used to convert input 

variable responses into a output. Neural networks cover a very wide range of techniques that 

are used for a wide range of applications. As a chemometric quantitative modeling technique, 

ANN stands far apart from PLSR and other regression techniques, for several reasons. First of 

all, the model structure cannot be easily shown using a simple mathematical expression, but 

rather requires a map of the network architecture. Another important consequence of using 

non-linear transfer functions is that the ANN method has the flexibility to model linear or non-

linear relationships between the X-variables and the Y-variable.13 

Traditional approaches of solving chemical engineering problems frequently have their 

limitations, as for example in the modeling of highly complex and nonlinear systems. First, 

ANN can be highly nonlinear, second the structure can be more complex, and hence more 

representative, than most other empirical models, third the structure does not have to be 

prespecified, and fourth, they are quite flexible models. An ANN forms a mapping F between 

and input space X and an output space Y. We can distinguish three different kinds of mappings: 

 both the input and output spaces are comprised of continuous variables, a typical 

case of process modeling. 

 the input space is comprised of continuous variables whereas the output space is 

comprised of a finite set of discrete variables as in classification and fault detection. 

 both the input space and the output space are comprised of discrete variables that 

are mapped in so called associative nets. 

Mostly used types of neural networks in chemical engineering problems are feedforward nets, 

recursive nets, and radial basis function nets. In this dissertation only feedforward nets will be 

described in detail since that type of ANN was used in presented research.44 

 From an engineering viewpoint ANN can be viewed as nonlinear empirical models that 

are especially useful in representing input-output data, making predictions in time, classifying 

data, and recognizing patterns. Fig. 2.16. shows the basic structure of a single processing unit 

in an ANN which will be referred to as a node in this work and is analogous to a single neuron 

in the human brain. A node receives one or more input signals, Ij, which may come from other 

nodes or from some other source. Each input is weighted according to the value wi.j which is 

called a weight. These weights are similar to the synaptic strength between two connected 

neurons in the human brain. The weighted signals to the node are summed and the resulting 
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signal, called the activation, h, is sent to a transfer function, g, which can be any type of 

mathematical function, but is usually taken to be a simple bounded differentiable function such 

as the sigmoid (Fig. 2.17.). If the function g is active over the entire input space, it is termed a 

global transfer function in contrast with radial basis functions that are local functions. The 

resulting output of the node Oj, may then be sent to one or more nodes as an input or taken as 

the output of an ANN model.44  

 

 
Figure 2.16. Structure of a single processing node 44 

 

 
Figure 2.17. Plot of the sigmoid transfer function 44 

 

 A collection of nodes connected to each other forms the artificial neural network. 

Number of nodes to use cannot be prespecified, but that question is addressed in a paper by 

Baum and Haussler.45 Figure 2.18. is an example of ANN. Numerous other architectures can 

be found in the literature; Lippmann 46 documents at least 50 other network configurations. A 

group of nodes called the input layer receives a signal from some external source. In general, 

this input layer does not process the signal unless it needs scaling. Another group of nodes, 

called the output layer, return signals to the external environment. The remaining nodes in the 

network are called hidden nodes because they do not receive signals from or send a signal to an 
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external source or location. The hidden nodes may be grouped into one or more hidden layers. 

Each of the arcs between two nodes (the lines between the circles in Fig. 2.18.) has a weight 

associated with it. Figure 2.18. shows a layered network in which the layers are fully connected 

from one layer to the next (input to hidden, hidden to hidden, hidden to output). Although this 

type of connectivity is frequently used, other patterns of connectivity are possible. Connections 

may be made between nodes in nonadjacent layers or within the same layer, or feedback 

connections from a node in one layer to a node in a previous layer can also be made. This latter 

type of connection is called a recurrent connection, depending on the type of application for 

which the network is being used, such a connection may have a time delay associated with it.44 

 

 
Figure 2.18. Structure of a layered neural network 44 

 

Generally, there is no direct analytical method of calculating what the values of the 

weights are if a network is to model a particular behavior of a process. Instead, the network 

must be trained on a set of data (called the training set) collected from the process to be modeled. 

Training is just the procedure of estimating the values of the weights and establishing the 

network structure, and the algorithm used to do this is called a learning algorithm. The learning 

algorithm is nothing more than some type of optimization algorithm. Once a network is trained, 

it provides a response with a few simple calculations, one of the advantages of using an ANN 

instead of a first principles model in cases for which the model equations must be solved over 

and over again. A key difficulty with optimization for neural network problems is that multiple 

minima occur.47 Since most training procedures used for neural networks typically find local 

minima starting from randomly selected starting guesses for the parameters, it should be 
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expected that local minima of varying quality will be found. Use of a global optimization 

procedure, such as genetic algorithms, branch and bound, or simulated annealing offers solution 

for avoiding local minima. Regardless of what training algorithm is used to calculate the values 

of the weights, all of the training methods go through the same general steps. First, the available 

data is divided into a training and test set. The procedure called supervised learning is then used 

to determine the values of weights of the network: 

1. for a given ANN architecture, the values of the weights in the network are initialized 

as small random numbers. 

2. The inputs of the training set are sent to the network and the resulting outputs are 

calculated. 

3. Some measure (an objective function) of the error between the outputs of the 

network and the known correct (target) values is calculated. 

4. The gradients of the objective function with respect to each of the individual weights 

are calculated. 

5. The weights are changed according to the optimization search direction and step 

length determined by the optimization code. 

6. The procedure returns to step 2. 

7. The iteration terminates when the value of the objective function calculated using 

the data in the test set starts to increase. 

If target values are not known so that the learning goal is not defined in terms of specific correct 

examples, a procedure called unsupervised learning that is analogous to classification in 

statistics can be employed. A net will then produce output signals corresponding to the 

established input category, i.e., extract features from seemingly unstructured data.44  

The purpose of partitioning the available data into the training and test set is to evaluate 

how well the network generalizes (predicts) to domains that were not included in the training 

set. For non-trivial problems, collecting of all the possible input-output patterns needed to span 

the input-output space for a particular behavior or process to be modeled, usually is not possible. 

Therefore, the network has to be trained with subset of all of the possible input-output patterns. 

However, the training set must be representative of the domain of interest if it is expected for 

the network to learn (interpolate among the data) the underlying relationships and correlations 

in the process that generated the data. If not, the net may not predict well for similar data and 

may predict poorly for completely novel data (extrapolate). Noise in the data surprisingly 

automatically provides some smoothing, namely by adding the absolute value of the first 

derivative of the objective function as a penalty to the objective function. By holding some of 
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the data back from the training phase to comprise a test set, you can evaluate how well the 

neural network can generalize by examining the value of the prediction error to the test set. For 

three reasons some type of unsupervised preprocessing of the data to be used in identifying a 

network often needs to carry out: 

1. reducing the dimensionality of the data (feature extraction), and thus the complexity of 

the net used to represent it along with the correlations among variables; 

2. transformation of the data into a more suitable format for processing by the net; 

3. eliminating or reducing auto correlation for each variable.44 

 

In feedforward neural networks computation nodes are arranged in layers and information 

feeds forward from layer to layer via weighted connections as illustrated in Fig. 2.19. 

Mathematically, the typical feed-forward network can be expressed as: 

𝑦𝑖 = 𝜑𝑜[𝐶𝜑ℎ(𝐵𝑢𝑖 + 𝑏ℎ) + 𝑏𝑜]    (XY) 

where yi is the output vector corresponding to input vector ui, C is the connection matrix (matrix 

of weights) represented by arcs from the hidden layer to the output layer, B is the connection 

matrix from the input layer to the hidden layer, and bh and bo are the bias vectors for the hidden 

and output layers. φh and φo are the vector valued functions corresponding to the activation 

(transfer) functions of the nodes in the hidden and output layers. Thus, feed-forward neural 

network models have the general structure of: 

𝑦𝑖 = 𝑓(𝑢)      (XY) 

where f(u) is a nonlinear mapping. Hence feed-forward neural networks are structurally similar 

to nonlinear regression models, and Eq. (XY) represents a steady state process. To use models 

for identification of dynamic systems or prediction of time series, a vector comprised of a 

moving window of past input values (delayed coordinates) must be introduced as inputs to the 

net. The large number of parameters necessitates large quantities of training or identification 

data, and slower times for identification.44 
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Figure 2.19. Information flow in a feed-forward neural network. Circles represent 

computation nodes (transfer functions), and lines represent weighted connections. The bias 

thresholding nodes are represented by squares. 44 

 

After the type of ANN is chosen, one still must determine the specific details concerning 

the structure of the nodes (transfer functions) and the connections between them. No general 

theoretically based strategy exists to carry out this task, but numerous strategies have been 

proposed. Similar approaches are presented in papers by van de Laar and Heskes48 and Reed49. 

An appropriately sized network should exhibit following characteristics: 

1. Good generalization, i.e., prediction for new data, by avoiding under- and over-fitting 

2. Computational efficiency, the smaller the network, the fewer the parameters, less data 

is needed, and the identification time is less. 

3. Interpretation of the input-output relation is so far as possible. 

Because ANN are not unique, that is many nets can produce identical outputs from prespecified 

inputs, and many different goals can be deemed “best”, searching for the “best” net is rarely an 

efficient use of time. A “satisfactory” net is all that is needed to make predictions or classify 

data. If one chooses to start the training (identification) with more nodes and connections than 

eventually plans to end up with, the net will contain considerable redundant information after 

the training terminates. Next step would be to prune the nodes and/or links from the network 

without significantly degrading performance. Pruning techniques can be categorized into two 

classes. One is the sensitivity method given in paper by Lee.50 The sensitivity of the error 

function is estimated after the network is trained. Then the weights or nodes which relate to the 

lowest sensitivity are pruned. The other class is to add terms to the objective function that prune 

the network by driving some weights to zero during training.49,51 These techniques require some 
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parameter tuning which is problem dependent to obtain good performance. An alternate 

approach to building a net is to start with a small number of hidden nodes and add new nodes 

or split existing nodes if the performance of the network is not satisfactory. Pruning is identical 

to backward elimination and growing to forward selection in regression. The number of inputs 

in the data set can be reduced by applying PCA, or the Karhunen-Loeve transformation, and 

hence reduce the size and structure of the net. The transformed coordinates can be arranged in 

order of their significance, with the first being the components corresponding to the major 

eigenvectors of the correlation matrix (largest eigenvalues). A major weakness of these methods 

is that they are not invariant under a transformation of the variables. For example, a linear 

scaling of the input variables (that may be caused by a change of units for the measurements or 

by scaling needed for identification) is sufficient to modify the PCA results. Feature selection 

methods that are sufficient for simple distributions of the patterns belonging to different classes 

can fail in classification tasks with complex decision boundaries. In addition, methods based 

on a linear dependence (such as correlation) cannot take care of arbitrary relations between the 

pattern coordinates and the different classes.44 

 The standard way from the perspective of investigators using neural networks is to train 

the networks to reproduce the desired dynamic behavior using the backpropagation-through-

time algorithm.52 Closer examination of this technique reveals that what is really being carried 

out is conventional prediction error estimation. 53 Because ANN models are nonlinear in the 

coefficients, iterative methods must be used. The backpropagation algorithm is a gradient 

descent scheme that is well suited for parallel implementation in hardware as each stage uses 

only local information about the inputs and outputs of each activation node. For calculations on 

a serial computer, more efficient optimization techniques such as the BFGS or conjugate 

gradient algorithms are preferred. Although analytic formulation of the gradients given the 

specific equations for the ANN is quite complex because of the existence of state feedback, use 

of the gradient calculation as done in the BP algorithm52 is both intuitive and computationally 

efficient. Analytical gradients of the objective function can be combined with an efficient quasi-

Newton optimization code such as NPSOL in MATLAB or GRG2 in Excel to yield rapid 

parameter identification. The described parameter estimation scheme is known as prediction 

error estimation. An inherent assumption underlying this strategy is that the process output 

measurements, yt, only contain additive white noise (noise uncorrelated in time) while the 

process inputs are assumed to be deterministic. In reality, these assumptions are rarely met, and 

it can be shown that even when simple linear regression is used to model a steady-state process, 

the presence of noise in the independent variable will yield biased parameter estimates and 
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biased predictions. Noise in the inputs is also a serious problem in the identification of linear 

dynamic models because when the effect of input noise is neglected, and it exists, prediction 

error methods cannot give consistent parameter estimates. If the noise characteristics of the 

process measurements are known, this problem can be ameliorated to a degree, but in general 

how to resolve the problem is still open. For nonlinear, nonparametric system identification, 

the problem of bias similarly exists, and is further complicated by the nonlinearity of the model. 

In the case of nonlinear systems modeled by parametric models, various types of linearization 

based error-in the- variables methods have been proposed by Kim et al.54 Similar methods could 

be applied to neural network models if model bias became a serious problem. Another problem 

with using the prediction error method has to do with the uncertainty associated with predicted 

output values. One cannot assume the values are not autocorrelated even if the residual errors 

are normally distributed, hence any confidence limits placed on the outputs must be developed 

with care.44 

 The great strength of neural networks is their ability to learn arbitrary mappings through 

their role as nonparametric estimators. This strength is also a weakness because in fitting input-

output data, a large number of weights must be adjusted during training. If we consider the 

problem to be one of forming an estimate y=f(x; D), of an unknown model, E[y|x], given a 

training set D={(x1, y1), …, (xN, yN)}, the mean square estimation error between the created 

function and the actual model is: 

𝐸[(𝑓(𝑥, 𝐷) − 𝐸[𝑦|𝑥])2] = (𝐸[(𝑓(𝑥, 𝐷)] − 𝐸[𝑦|𝑥])2 + 𝐸[(𝑓(𝑥, 𝐷) − 𝐸[𝑓(𝑥, 𝐷)])2] 

(Eq. XY.) 

for any arbitrary x and all possible realizations of D. The first term on the right hand side of the 

equality sign is the square of the bias between estimate and the unknown model, and the second 

term is the variance of estimate, i.e.: 

(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟)2 = (𝑏𝑖𝑎𝑠)2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒   (Eq. XY.) 

thus, decomposing the estimation error into bias and variance components. A trade-off exists 

between reducing bias and variance in estimation theory.55, 56 A simple parametric model with 

few parameters may show low variance in the estimation error but intolerable bias in its 

predictions due to an inability to capture the complexity of the system being modeled. A 

traditional feed-forward neural network with hundreds or thousands of weights may have very 

low bias but high variance due to over-fitting of the noisy training data. The goal is to minimize 

both bias and variance. Variance may be reduced by using larger and larger training sets, and 

to bias may be reduced by increasing size of the network, making a large optimization problem 

quite difficult to solve. But a more common approach to the control of estimation bias and 
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variance in modeling feedforward ANN is that of periodic stopping during training and using 

cross validation to evaluate the residual error. When the residual error no longer decreases, 

training is stopped, and the weights (coefficients) are fixed. This procedure is a form of 

regularization and is discussed from a system identification perspective in a paper by Sjoberg 

and Ljung.57 Other methods of controlling both bias and variance in neural network models 

include reducing the number of weights through pruning or slowly allowing the network to 

grow while training to prevent over-parameterization. Recurrent networks alleviate many of the 

problems of over-fitting and the need for large training sets characteristic of feedforward 

networks when applied to modeling dynamic processes. The absence of a need for a history 

window for each input variable as well as fewer hidden nodes translates into significantly fewer 

weights and less chance of over-fitting for a given data set. Incorporation of prior knowledge 

about the process to be modeled into the neural net as in Ungar’s work59 may allow the 

parameter count to be reduced even further.44 

 Model validation is an important part of system identification. Although a large number 

of statistical hypothesis tests and evaluation criteria have been developed for linear, steady-state 

systems, the problem is much more complicated for nonlinear, dynamic systems. A simple 

criterion of model validity is the value of the objective 

function when the model is applied to a data set different than the data set used for system 

identification. However, such a criterion does not distinguish between error caused by model 

mismatch (bias) and the error due to data corruption. More sophisticated tests are based on 

correlational analysis in which you examine the prediction errors. If a non-linear, nonparametric 

model is adequate and unbiased, then the prediction errors should be uncorrelated with all linear 

and nonlinear combinations of past inputs and outputs.59 This 

outcome can be determined using the normalized cross-correlation function. For multivariate, 

nonlinear models it is of course impractical to check every possible cross-correlation, but the 

auto and cross-correlations should be calculated for the residuals as a minimal check on model 

validity.44 

 Although the ANN method is a very powerful tool for developing quantitative models, 

it is also probably the most susceptible to overfitting. For feed-forward networks, overfitting 

most often occurs through the use of too many nodes in the hidden layer. Although cross-

validation techniques can be used to optimize the number of hidden nodes, this process is more 

cumbersome than for PLSR because separate ANN models with different numbers of hidden 

nodes must be developed separately. In addition, from a practical point of view, the ANN model 

cannot be easily reduced into a series of regression coefficients (b), as in PLSR, and the real-
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time data processing instructions involve a series of steps, rather than a single vector dot 

product. Finally, there is very little, or no, interpretive value in the parameters of an ANN 

model, which eliminates useful means for improving the confidence of a predictive model. With 

these limitations in mind, however, ANNs can be very effective at producing quantitative 

models in cases where unknown non-linear effects are present in the data. 13 

 

2.4. Fosamprenavir Calcium 

 

Fosamprenavir Calcium (FSM-Ca) is the calcium salt form of fosamprenavir, prodrug 

of amprenavir, and a human immunodeficiency virus (HIV) protease inhibitor with antiviral 

property. Fosamprenavir is converted to amprenavir by cellular phosphatases in the epithelial 

cells of the intestine. Then amprenavir binds to the active site of HIV-1 protease, thereby 

preventing the proteolytic cleavage of viral Gag-Pol polypeptide into individual functional 

proteins, thereby leading to the formation of immature non-infectious viral particles.60 The 

chemical name of fosamprenavir calcium is (3S)-tetrahydrofuran-3-yl (1S,2R)-3-

[[(4aminophenyl) sulfonyl](isobutyl)amino]-1-benzyl-2-(phosphonooxy) propylcarbamate 

monocalcium salt. Fosamprenavir calcium is a single stereoisomer with the (3S)(1S,2R) 

configuration. It has a molecular formula of C25H34CaN3O9PS and a molecular weight of 

623.7. Structural formula can be seen on Figure 2.20. Fosamprenavir calcium is a white to 

cream-colored solid with a solubility of approximately 0.31 mg per mL in water at 25°C.61 

 

 
Figure 2.20. Structural formula of Fosamprenavir Calcium 60 
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3. MATERIALS AND METHODOLOGY 

 

3.1. Materials 

 

 API compound fosamprenavir calcium, FSM-Ca (C25H34CaN3O9PS) shown on Figure 

3.1. was obtained from a pharmaceutical company. During FSM-Ca recrystallization process 

methanol (MetOH) (CH3OH, min. 99,8 %) was used as a solvent and water (H2O) as an 

antisolvent. Effects of the ethanol (EtOH) (CH2CH3OH, min. 96%) addition to the mixture were 

also examined. Later on, CLD data acquiring was conducted with recrystallized FSM-Ca 

suspended in antisolvent isopropanol ((CH3)2CHOH, min. 99,5 %). 

 
Figure 3.1. Fosamprenavir calcium molecule 

 

Table 3.1. Chemicals used in experiments 

Name Moleculelar formula Molar mass, g/mol 

Fosamprenavir calcium C25H34CaN3O9PS 623,7 

Methanol CH3OH 32,04 

Ethanol CH2CH3OH 46,07 

Water H2O 18,015 

Isopropanol (CH3)2CHOH 60,096 
 

3.2. Determination of FSM-Ca solubility curves and metastable zone width 
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 Determination of solubility curve and metastable zone width (MSZW) is necessary in 

order to successfully design and conduct recrystallization procedure of initial FSM-Ca sample. 

For this purpose, instrument Technobis Crystal16 was used (Fig. 3.2.). A unit consists of four 

independently temperature-controlled blocks, each block having four reactors, encased in a 

robust bench top setup. Blocks are electrically heated and cooled by a combination of Peltier 

elements and a heater. Sixteen reactors are at a volume of 1 mL, each having a dedicated 

turbidity measurement equipment. Samples of mixtures with prepared concentrations of interest 

are placed in vials. Afterwards, vials are placed into the Crystal16 for which user needs to set-

up the heating and cooling procedure (starting temperature, final temperature, rate of change of 

temperature). During the experiment temperature is controlled by the instrument according to 

the program parameters set-up by user. If solubility is dependent of the temperature, solute will 

start to dissolve with increase of temperature. Turbidity of the system is monitored whole time. 

When solution completely clears i.e. turbidity measurement reaches minimum, dissolving is 

complete. Temperature at which this occurs is marked as solubility point for the specified 

concentration, meaning that the particular concentration of solute will dissolve completely at 

this temperature. Cooling begins after the final temperature of heating is reached. For systems 

where solubility is dependent of the temperature, decreasing temperature will result in 

decreasing solubility and solution will become precipitated. When temperature is low enough 

for given system, therefore solubility too, crystallization will occur. Result will be blurring of 

the solution which will be detected by the equipment for turbidity measurement. Temperature 

at which crystallization for given concentration occurs will be marked as precipitation point. 

When these points for the same concentration are drawn on the concentration-temperature phase 

diagram, where concentration is on Y-axis and temperature is on X-axis, difference in their 

temperature value is MSZW for given concentration. In order to have a full insight into the 

MSZW of the system, difference for at least three concentration points must be defined. 

Afterwards, solubility curve and precipitation curve can be approximated by appropriate 

regression method.  

 After determining MSZW using Crystal16 instrument, results need to be confirmed on 

laboratory scale equipment. In order to do that, three concentrations were prepared according 

to results on Crystal16. Mixtures were first heated and later cooled down to examine are the 

solubility and precipitation point for the given concentration on laboratory scale matching with 

determined MSZW. 
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Figure 3.2. Technobis Crystal16 

 

3.3. FSM-Ca recrystallization 

 

 Recrystallization experiments were undertaken in apparatus shown on Figure 3.3.. 

Apparatus consists of 1 L glass reactor with jacket, overhead mixer, temperature sensor and 

circulating thermostatic bath for temperature control in reactor. Mixer consists of motor and 

agitator with four blades pitched at 45° angle. 

 
Figure 3.3. Laboratory apparatus for recrystallization experiments 

 

 Six recrystallization experiments of original FSM-Ca sample were performed in order 

to obtain samples with different PSDs. Varying the process conditions (cooling rate, seeding, 

antisolvent addition, mixing rate) resulted with seven different PSD samples (including original 
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sample) of FSM-Ca. Super solubility and solubility curves were previously experimentally 

determined. Original FSM-Ca sample is named FSM-Ca-0, while recrystallized samples are 

FSM-Ca-1, FSM-Ca-2 FSM-Ca-3, FSM-Ca-4, FSM-Ca-5 and FSM-Ca-6. Recrystallization 

procedures are presented in Tables 3.2.-3.7. 

 Follows procedure of the conducted recrystallization processes for FSM-Ca-1 sample: 

50 g of FSM-Ca was suspended in 500 mL of methanol (100 g/L) in 1-L reactor. Agitation was 

set to 180 RPM. Mixture was heated and maintained at 45 °C for 10 min. Afterwards, solution 

was filtered through blue filter paper on a Büchner funnel. During filtration methanol 

evaporates, so 37,5 mL of methanol was added to filtered solution in order to maintain initial 

concentration. Afterwards, the mixture was heated to 52 °C. Over 20 min 108 mL of water was 

dripped into the mixture. Temperature was maintained at 52 °C for 2 hours after observing first 

crystals. Suspension was then linearly cooled down to 22 °C with cooling rate of 0,0625 °C/min 

and maintained on the temperature for 15 hr with agitation set to 130 RPM. After this period 

suspension was filtered and crystals were washed with 0,1 L mixture of methanol and water 

(4:1). The product was dried under vacuum at 25 °C until the amount of moisture (Karl Fischer 

Moisture test, KF) is less than 13%. 

 

Table 3.2. Recrystallization procedure for sample FSM-Ca-1 

Step FSM-Ca-1 

1. 
Add 50 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 180 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 10 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 52 °C 

7. Drip 108 mL of water over 20 min into mixture 

8. Maintain temperature at 52 °C for 2 hr after observing first crystals 

9. Linearly cool down to 22 °C (cooling rate 0,0625 °C/min) 

10. Maintain temperature at 22 °C for 15 hr; 130 RMP 

11. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

12. Dry at 25 °C under vacuum until KF < 13% 
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Table 3.3. Recrystallization procedure for sample FSM-Ca-2 

Step FSM-Ca-2 

1. 
Add 50 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 200 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 10 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 52 °C 

7. Drip 97 mL of water over 20 min into mixture 

8. Maintain temperature at 52 °C for 2 hr after observing first crystals 

9. Linearly cool down to 22 °C (cooling rate 0,0625 °C/min) 

10. Maintain temperature at 22 °C for 15 hr; 200 RMP 

11. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

12. Dry at 25 °C under vacuum until KF < 13% 
 

Table 3.4. Recrystallization procedure for sample FSM-Ca-3 

Step FSM-Ca-3 

1. 
Add 30 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 200 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 12 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 45 °C 

7. Drip 96,25 mL of water over 10 min into mixture 

8. Maintain temperature at 45 °C for 1 hr after observing first crystals 

9. Linearly cool down to 15 °C (cooling rate 0,125 °C/min) 

11. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

12. Dry at 25 °C under vacuum until KF < 13% 
 

Table 3.5. Recrystallization procedure for sample FSM-Ca-4 

Step FSM-Ca-4 
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1. 
Add 30 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 200 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 20 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 52 °C 

7. Drip 70 mL of water over 10 min into mixture 

8. Cool down to 45 °C and seed with 0,9 g FSM-Ca-0 

9. Maintain temperature at 45 °C for 2 hr after observing first crystals 

10. Linearly cool down to 15 °C (cooling rate 0,1 °C/min) 

11. Maintain temperature at 15 °C for 15 hr; 200 RMP 

12. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

13. Dry at 25 °C under vacuum until KF < 13% 
 

Table 3.6. Recrystallization procedure for sample FSM-Ca-5 

Step FSM-Ca-5 

1. 
Add 20 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 200 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 20 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 52 °C 

7. Drip 70 mL of water over 10 min into mixture 

8. Cool down to 45 °C and seed with 0,2 g FSM-Ca-0 

9. Maintain temperature at 45 °C for 2 hr after observing first crystals 

10. Linearly cool down to 15 °C (cooling rate 0,1 °C/min) 

11. Maintain temperature at 15 °C for 15 hr; 200 RMP 

12. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

13. Dry at 25 °C under vacuum until KF < 13% 
 

Table 3.7. Recrystallization procedure for sample FSM-Ca-6 
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Step FSM-Ca-6 

1. 
Add 50 g FSM-Ca, 500 mL methanol into 1 L glass reactor; 

Set agitation to the 200 RPM 

2. Heat up mixture to 45 °C 

3. Maintain temperature at 45 °C for 20 min 

4. Filter solution through the blue filter paper over a Büchner funnel 

5. Add filtered solution and 37,5 mL methanol into 1 L glass reactor 

6. Heat up mixture to 45 °C 

7. Drip 96,25 mL of water over 10 min into mixture 

8. Maintain temperature at 45 °C for 1 hr after observing first crystals 

9. Linearly cool down to 15 °C (cooling rate 0,167 °C/min) 

10. Filter suspension and wash product with 0,1 L methanol-water mixture 
(MeOH:H20=4:1) 

11. Dry at 25 °C under vacuum until KF < 13% 
 

3.4. Particle size distribution of FSM-Ca samples determination using laser 

backscattering method 

 

 PSD of the recrystallized FSM-Ca samples was determined by dry method using laser 

diffraction particle size analyzer Malvern Mastersizer 3000 shown on Figure 3.4. Particle size 

analysis is based on light scattering effect which occurs when the observed particles are 

illuminated by the laser light. Angle of light scattering is dependent of the particle size. 

 
Figure 3.4. Particle size analyzer Malvern Mastersizer 3000 
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Shape and size of crystals were analysed by image analysis taken from optical microscope 

Olympus BX53M connected to PC (Fig. 3.5.). 
 

 
Figure 3.5. Optical microscope Olympus BX53M 

 

3.5. Acquisition of data for calibration model development 

 

 CLD data acquisiton was performed in Mettler Toledo Optimax 1001 reactor system 

(Fig. 3.6.) using Mettler Toledo ParticleTrack G400 FBRM probe (Fig. 3.7.). Probe was 

installed above impeller at 45° angle. Sampling period of FBRM probe was 30 seconds.  

 

 
Figure 3.6. Mettler Toledo Optimax 1001 reactor system 
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Figure 3.7. Mettler Toledo ParticleTrack G400 FBRM probe 

 

Acquiring CLD data was conducted separately for each FSM-Ca sample. Procedure for CLD 

data acquisition is shown in table 3.8. Firstly, 2 grams of recrystallized sample of FSM-Ca was 

suspended in 500 mL of isopropanol (antisolvent) in 1-L reactor (FSM-Ca 0,51% w/w). 

Although optical properties of isopropanol and methanol slightly differ, FSM-Ca was 

suspended in antisolvent in order to avoid any possibility of dissolving crystalline material or 

crystallization. Suspension was maintained at constant temperature of 10° C and monitored 

with FBRM probe. Amount of FSM-Ca sample was increased in 10-minute periods - 2 g of 

FSM-Ca was added to suspension to increase the quantity of sample, meanwhile CLD data was 

acquired. Amount of FSM-Ca sample was increased 10 times, up to the final concentration of 

FSM-Ca 5,3% w/w.  

 

Table 3.8. Procedure for CLD data acquisition 

Step CLD data acquisition 

1. 
Add 2 g FSM-Ca, 500 mL isopropanol into 1 L glass reactor (FSM-Ca 0,51% w/w); 

Set agitation to the 150 RPM 
Maintain temperature at 45 °C 

2. Monitor CLD for 10 min 

3. Add 2 g FSM-Ca to mixture (FSM-Ca 1,01% w/w) 

4. Monitor CLD for 10 min 

5. Add 2 g FSM-Ca to mixture (FSM-Ca 1,50% w/w) 

6. Monitor CLD for 10 min 

7. Add 2 g FSM-Ca to mixture (FSM-Ca 2,00% w/w) 

8. Monitor CLD for 10 min 

9. Add 2 g FSM-Ca to mixture (FSM-Ca 2,48% w/w) 
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10. Monitor CLD for 10 min 

11. Add 2 g FSM-Ca to mixture (FSM-Ca 2,96% w/w) 

12. Monitor CLD for 10 min 

13. Add 2 g FSM-Ca to mixture (FSM-Ca 3,44% w/w) 

14. Monitor CLD for 10 min 

15. Add 2 g FSM-Ca to mixture (FSM-Ca 3,91% w/w) 

16. Monitor CLD for 10 min 

17. Add 2 g FSM-Ca to mixture (FSM-Ca 4,38% w/w) 

18. Monitor CLD for 10 min 

19. Add 2 g FSM-Ca to mixture (FSM-Ca 4,84% w/w) 

20. Monitor CLD for 10 min 

21. Add 2 g FSM-Ca to mixture (FSM-Ca 5,30% w/w) 

22. Monitor CLD for 10 min 
 

3.6. Calibration model development using partial least squares regression method 

 

 CLD and PSD data sets for model development were acquired from 7 different FSM-

Ca crystalline samples with different PSDs. In addition, during gathering of CLD data for 

particular FSM-Ca samples the quantity of crystalline sample in suspension was increased 

progressively to consider its possible influence on the resulting CLD.  The aim was to increase 

the robustness of the developed models. 

 Acquired CLD data was preprocessed and analyzed using multivariate methods to gain 

more detailed insight into the data and their relationships and to withdraw as much as possible 

quantitative information. Data preprocessing and analysis were conducted using Principal 

Component Analysis (PCA) method in MathWorks MATLAB software. Furthermore, outliers 

were detected and removed based on visual analysis in PCA space, Mahalanobis distance and 

leverage. Different structures of calibration models were developed using partial least squares 

regression (PLSR), also in MathWorks MATLAB, in order to interpret the relation between 

CLD and PSD data based on real-time measured CLD. Different model structures were tested 

in order to achieve model with best accuracy and generalization properties. Altered parameters 

of the model were number of factors, different data preprocessing procedures and validation 

approaches. PLSR models were validated using two different approaches. First approach, cross-

validation, involved random selection of multiple CLD data groups used for model 

development and validation from a pool containing all 7 crystalline samples of FSM-Ca. 



77 
 

Afterwards, models were developed, tested and validated multiple times, each time using 

different combination of data groups for model development and validation. Result of cross-

validation is the average score of separate validation scores for different data samples. In the 

second approach test-set validation for testing and validation of models was used. In each 

sequence of validation one crystalline sample data was purposely omitted from data used for 

model development. Developed model was then validated using the data from omitted 

crystalline sample. Again, in order to compare different model structures, an average score of 

all 7 test-set validation sequences was calculated. 

 

3.7. Calibration model development using artificial neural networks 

 

 The second examined approach for CLD to PSD conversion calibration model 

development were artificial neural networks (ANN). Same CLD and PSD data of 7 crystalline 

FSM-Ca samples was used for model development and validation as for PLSR calibration 

model development. Neural network model development consists of several steps: 

1) Input and output data acquisition and preprocessing, 

2) Defining ANN type, 

3) Defining criteria for evaluating ANN performance, 

4) Defining algorithm for training of ANN, 

5) Training of ANN, 

6) Choosing an optimal inner structure of ANN, 

7) Validation and testing of ANN model on independent dataset. 

 

Input and output data acquisition was explained in sections 3.4. and 3.5. Afterwards data was 

preprocessed (standardization, scaling) according to requirements for particular neural network 

structures. ANN type used in research was feedforward multi-layer perceptron (MLP), while 

the training algorithms used were ADAM and Scaled Conjugated Gradient backpropagation 

(SCG). Selected criteria for evaluating ANN performance were root mean squared error 

(RMSE) (eq. XYZ) and coefficient of determination (R2) (eq. ZXY). 

 

𝑹𝑴𝑺𝑬 =  √
∑ (𝑦�̂�− 𝑦𝑖)2𝑛

𝑖=1

𝑛
    (XYZ) 

𝑹𝟐 =  𝟏 −
∑ (𝑦𝑖− �̂�)2𝑛

𝑖=1

∑ (𝑦𝑖− �̅�)2𝑛
𝑖=1

     (ZXY) 

where: 
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 𝑦�̂� − output value predicted by model 
 𝑦𝑖 − real output value 
�̅� − mean output value 

n – number of samples 

During model development different inner model structures were tested. Altered parameters of 

ANN models were number of hidden layers, number of neurons in hidden layers, objective 

value of performance criterion during training and activation functions. Networks were 

validated using a combination of cross-validation and test-set method. Networks were trained 

and validated 7 times for each combination of inner network structure parameters. In each 

validation sequence, all CLD data of one FSM-Ca crystalline sample was omitted, and later 

used for validation of developed network. Lastly, the average value of validation result for 

particular combination of inner network parameters was calculated from all 7 individual 

validation sequences. Procedure of neural network development was conducted using functions 

from software package MathWorks MATLAB Neural Network Toolbox (Fig. 3.8.) and Python 

programming language. 

 

 

Figure 3.8. MathWorks MATLAB Neural Network Toolbox user interface 
 

Experiments taken during development of ANN calibration model for CLD to PSD 
transformation using Python are presented in Table XY. 
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Table XY. ANN calibration model development experiments 

Nr. Data sample Preprocessing 
procedures Validation procedure Tested activation 

function 
Number of 

neurons 
Patience 

parameter 
Baseline 

parameter 

1. Raw data / Cross validation – 
random data split Tanh, Sigmoid, ReLu 1 - 300 Default Default 

2. Raw data Normalization (0 – 1) Cross validation – 
random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

3. Raw data Normalization (-1 – 1) Cross validation – 
random data split Tanh 1 – 300 Default Default 

4. Raw data Normalization (0 – 1), 
standardization 

Cross validation – 
random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

5. Raw data Normalization (-1 – 1), 
standardization 

Cross validation – 
random data split Tanh 1 – 300 Default Default 

6. Data without 
outliers / Cross validation – 

random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

7. Data without 
outliers Normalization (0 – 1) Cross validation – 

random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

8. Data without 
outliers Normalization (-1 – 1) Cross validation – 

random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

9. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – 
random data split Tanh, Sigmoid, ReLu 1 – 300 Default Default 

10. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – 
random data split Tanh, Sigmoid, ReLu 1 - 100 Default Default 

11. Data without 
outliers 

Normalization (-1 – 1), 
standardization 

Cross validation – 
random data split Tanh 1 – 300 Default Default 

12. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 100 

 Default Default 

13. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 100 

 Default Default 

14. Data without 
outliers 

Normalization (-1 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 100 

 3 Default 



80 
 

15. Data without 
outliers 

Normalization (-1 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 100 

 6 Default 

16. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 100 

 9 Default 

17. Data without 
outliers / Cross validation – CLD 

data split Tanh, Sigmoid, ReLu 1 - 10 9 Default 

18. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 10 Default 0.2 

19. Data without 
outliers 

Normalization (-1 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 10 Default 0.2 

20. Data without 
outliers 

Normalization (0 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 10 Default 0.4 

21. Data without 
outliers 

Normalization (-1 – 1), 
standardization 

Cross validation – CLD 
data split Tanh, Sigmoid, ReLu 1 – 10 Default 0.4 
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4. RESULTS AND DISCUSSION 

 

4.1. Development of system for automated data acquisition and process control in 

batch crystallization process  

 

First part of the research was development of integrated laboratory system for batch 

crystallization. It consists of three modules needed for automated operation of batch 

crystallization processes: automated data acquisition module, module for development of 

calibration model and module for real-time process monitoring and control of crystallization. 

Automated data acquisition module is used for collecting data needed for calibration 

model development. In this example, module is used for collection of UV-Vis spectrometric 

data of crystalline solute with given concentration at different temperatures. Experiment would 

then be repeated with different solute concentrations at different temperatures. Similar module 

can be used for collection of data for development of calibration model for CLD to PSD data 

conversion. CLD data with known PSD would be gathered instead of spectrometric data at 

different amounts of added crystalline matter and different temperatures. Module has graphical 

user interface (GUI) with two windows. First window, “Settings”, shown on Figure XYZ. is 

used for setting up the experiment conditions which will be used for data acquisition. In the 

case of UV-Vis spectrometer, parameters that can be changed are spectrum selection, 

wavelength resolution, integration time, sampling interval and experiment duration. 

  
Figure XYZ. GUI of the “Settings” window in automated data acquisition module 
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Second window, “Results”, shown on Figure XYZ. is used for monitoring the experiment and 

controlling temperature conditions of experiment. Left chart marked with number 1 is spectra 

data collected during experiment. Right chart marked with number 2 is showing temperature 

data for collected samples during experiment. On the right side of the “Results” window are 

located thermostat controls used for experiment temperature manipulation. On the bottom of 

the window are located buttons for control of experiment (3 – indicator of measurement 

procedure, 4 – pause button for temporary pausing experiment, 5 – stop button for ending 

experiment, 6 – nucleation button for adding this information to data log). Collected data is 

saved in spreadsheet document, which can be used for later analysis or development of 

calibration model. 

 
Figure XYZ. GUI of the “Results” window in automated data acquisition module 

 

Module for development of calibration model is used for PCA analysis of collected data 

or development of PLSR calibration model based on collected data. In this example, module is 

used for development of calibration model for UV-Vis spectrometer monitoring concentration 

of solute in crystallization system based on measured UV-Vis spectrum and process 

temperature. Similar module can be used for development of PLSR calibration model for CLD 

to PSD data conversion. Instead of UV-Vis spectra data, CLD data would be input to model, 

and PSD data would be output of model. Module has graphical user interface (GUI) with two 

main windows. First main window, “Preprocessing”, shown on Figure XYZ. is divided in sub-

windows with different uses. “Data Selection” sub-window is used for selection of data files to 

be used for model development. “Smoothing” sub-window, shown on figure XYZ., is used for 
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filtering previously selected data by Savitsky-Golay filter. Besides the two shown sub-

windows, there are also “Data Cut” sub-window used for selection of data interval to be used 

for model development, and “Derivation” sub-window used for data preprocessing operation 

for extracting differential values from input data for model development. “Data Cut” and 

“Derivation” sub-windows have similar GUIs to the “Smoothing” sub-window. 

 
Figure XYZ. GUI of the “Preprocessing” window, “Data Selection” sub-window in module 

for development of calibration model 

 

 
Figure XYZ. GUI of the “Preprocessing” window, “Smoothing” sub-window in module for 

development of calibration model 

 

Second main window, “Model Building” is also divided in sub-windows. “Data Entry” sub-

window, shown on figure XYZ. is used for inputting data to be used for model development. 
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Also, specific samples can be excluded from the model development if there is doubt that 

sample is outlier. “Modelling” sub-window, shown on figure XYZ., is used for setting-up 

validation methodology and validation samples, final model parameters, and running PCA or 

PLSR model development algorithm. Based on the chosen model algorithm, user will next use 

either “PCA Results” (figure XYZ.) or “PLSR Results” (figure XYZ.) sub-window. PCA was 

mainly used for analysis of data correlation and detection of outliers in data. User can change 

the data shown on charts on “PCA Results” sub-window. Charts mostly used for data 

visualization during PCA analysis were PCA Scores (figure XYZ.), PCA Loadings (figure 

XYZ.) and Hotelling T2 (figure XYZ.). PLSR was used for development of calibration model. 

Charts mostly used for data visualization during PLSR model development were PLSR X Scores 

and X Loadings (figure XYZ.), RMSE vs Component Number (figure XYZ.), Coefficient of 

Determination vs Component Number (figure XYZ.), Explained Y Variance vs Component 

Number (figure XYZ.) and Influence chart (figure XYZ.). Last sub-window of the main window 

“Model Building” is “Export” (figure XYZ.), which is used for exporting developed PLSR 

model parameters to the textual data file, which can later be used in module for real-time process 

monitoring and control of batch crystallization process. 

 
Figure XYZ. GUI of the “Model Building” window, “Data Entry” sub-window in module for 

development of calibration model 
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Figure XYZ. GUI of the “Model Building” window, “Modelling” sub-window in module for 

development of calibration model 

 

 
Figure XYZ. GUI of the “Model Building” window, “PCA Results” sub-window in module 

for development of calibration model 
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Figure XYZ. Chart “PCA Scores” on sub-window “PCA Results” sub-window in module for 

development of calibration model 

 

  
Figure XYZ. Chart “PCA Loadings” on sub-window “PCA Results” sub-window in module 

for development of calibration model 
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Figure XYZ. Chart “Hotelling T2 vs Samples” on sub-window “PCA Results” sub-window 

in module for development of calibration model 

 

 
Figure XYZ. GUI of the “Model Building” window, “PLSR Results” sub-window in module 

for development of calibration model, with shown charts PLSR “X Scores” and “X Loadings” 
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Figure XYZ. Chart “RMSE vs Component Number” on sub-window “PLSR Results” sub-

window in module for development of calibration model 

 

 
Figure XYZ. Chart “Coefficient of Determination vs Component Number” on sub-window 

“PLSR Results” sub-window in module for development of calibration model 
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Figure XYZ. Chart “Explained Y Variance vs Component Number” on sub-window “PLSR 

Results” sub-window in module for development of calibration model 

 

 
Figure XYZ. Chart “Influence” on sub-window “PLSR Results” sub-window in module for 

development of calibration model 
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Figure XYZ. GUI of the “Model Building” window, “Export” sub-window in module for 

development of calibration model 

 

First part of the research was development of integrated laboratory system for batch 

crystallization. It consists of three modules needed for automated operation of batch 

crystallization processes: automated data acquisition module, module for development of 

calibration model and module for real-time process monitoring and control of crystallization. 

Module for real-time monitoring and control of batch crystallization process is the last 

one in chain. In this example it is used to continuously monitor solute concentration in 

crystallization system based on continuously measured spectra and temperatures. Spectrometric 

data and temperature are inputs to the calibration model used for monitoring of solute 

concentration. When solute concentration is monitored in real-time, it can also be maintained 

at the desired level, therefore used as a controlled variable of the crystallization process. Based 

on crystallization system properties, temperature and/or addition of anti-solvent would be 

manipulated variables. This strategy for batch crystallization process control is known as 

supersaturation control. Supersaturation, calculated from the solubility curve and current solute 

concentration for a given temperature, is maintained at the constant level throughout whole 

process. Similar or as an addition to supersaturation control, continuous monitoring of 

crystalline substance PSD would allow manipulating with process variables in order to achieve 

desired PSD at the end of the batch crystallization process. Module has GUI with three 

windows. First window, “Main”, shown on Figure XYZ. is used for real-time monitoring and 
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control of batch crystallization process. Two charts are located on the left half of the window. 

Upper chart is showing concentration vs. temperature data for current state in process, solubility 

curve and supersaturation curve. Lower chart has three Y-axes: supersaturation, solute 

concentration and temperature, while time is shown on X-axis. These two charts are used for 

visual monitoring of the process state. On the right half of the window, process schematic is 

shown. Current values of process variables (supersaturation setpoint, temperature setpoint, 

jacket temperature, batch temperature, solubility concentration for the current process 

temperature, solute concentration, supersaturation) are shown. Based on the chosen control 

strategy, user can either manually change temperature setpoint in jacket or batch, or he can set 

supersaturation setpoint if supersaturation control strategy is chosen.  

 

 
Figure XYZ. GUI of the “Main” window in module for real-time monitoring and control of 

batch crystallization process 

 

Second window, “Settings”, shown on Figure XYZ. is used for setting up process monitoring 

and control parameters before starting the crystallization process. User has to put in parameters 

defining solubility curve and process temperature range, while supersaturation curve is 

optional. Next, monitoring method needs to be read into the application. This is the textual file 

generated in model development step. Lastly, user has to set measurement and control time 

intervals. Optionally, based on controlled crystallization system user can tune PID controller 

and internal thermostat control parameters in order to achieve better temperature control. 
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Figure XYZ. GUI of the “Settings” window in module for real-time monitoring and control 

of batch crystallization process 

 

Third window, “Diagnostic”, shown on Figure XYZ. is used as a process log, where all events 

important for the monitoring and process control procedure are recorded and exported to the 

textual file at the end of application use. 

 

 
Figure XYZ. GUI of the “Diagnostic” window in module for real-time monitoring and 

control of batch crystallization process 
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4.2. Solubility curves and metastable zone widths 

 

Results of the Fosamprenavir Calcium metastable zone width determination are given 

in this section. MSZW was examined using Crystal16 instrument for four crystallization 

systems:  

1. FSM-Ca – MetOH    Figure XYZ.  

2. FSM-Ca – MetOH-EtOH (70:30)  Figure XYZ.  

3. FSM-Ca – MetOH-EtOH (80:20)  Figure XYZ. 

4. FSM-Ca – H2O (95:5)    Figure XYZ. 

From the given figures, it can be seen that the greatest solubility of FSM-Ca is in pure MetOH, 

addition of EtOH lowers solubility, while addition of water significantly lowers solubility of 

FSM-Ca. Addition of EtOH to the mixture was examined to lower solubility of FSM-Ca in 

MetOH in order to obtain solubility curve with moderate slope which is beneficial for 

crystallization process control based on concentration-temperature dependence. Increased 

amount of EtOH from 20% v/v to 30 % v/v slightly decreased solubility. Addition of water for 

this purpose is not feasible because its impact on lowering solubility is too significant. Water 

can be used as antisolvent in antisolvent crystallization process of FSM-Ca from MetOH. On 

figure XYZ, solubility curve experimentally determined in laboratory for FSM-Ca – MetOH-

EtOH (80:20) system can be also seen. Experimentally determined solubility is higher than 

solubility determined with Crystal16 instrument. Reason is the procedure of solubility curve 

examination. Procedure on Crystal16 is dynamic, i.e. temperature is changing with constant 

rate during the experiment. This may result in incorrectly lower solubility results, especially in 

slow dissolving processes if rate of change of temperature is to high. Contrary, laboratory 

examination of solubility is more static process in its nature. Operator sets specific temperature 

in the reactor and visually inspects the mixture. If crystalline content is not completely 

dissolved, operator will increase temperature and repeat the procedure until whole initially 

suspended crystalline mass is dissolved. This way solubility curve will be more correctly 

determined but it takes longer time to do it. 

Concerning super solubility, it can be seen that addition of EtOH increases the steepness 

of curve, i.e. widens MSZW, meaning that the mixture needs to be cooled to the lower 

temperature in order to achieve spontaneous crystallization from solution. Additional increase 

of EtOH amount from 20% v/v to 30 % v/v decreased slope of super solubility curve. Although 
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the effect of rate of change of temperature in Crystal16 on accuracy of super solubility curve 

was not tested in laboratory set-up, it can be expected that the error was also inducted by process 

dynamics. It is expected that accurate super solubility curves in case of slow crystallization 

process would have less steep slope because with static or slower cooling crystallization would 

occur at higher temperatures than in Crystal16 experiments. 

 

 
Figure XYZ. MSZW of FSM-Ca – MetOH crystallization system 
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Figure XYZ. MSZW of FSM-Ca – MetOH-EtOH (70:30) crystallization system 

 

 
Figure XYZ. MSZW of FSM-Ca – MetOH-EtOH (80:20) crystallization system 

 

 
Figure XYZ. MSZW of FSM-Ca – MetOH-H2O (95:5) crystallization system 
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4.3. Particle size distribution of Fosamprenavir Calcium samples 

 

 This section presents the results of PSD analysis of original and recrystallized FSM-Ca 

samples conducted on Malvern Mastersizer 3000. PSDs of original and recrystallized samples 

are shown on figures XYZ – ZYX. It can be seen that different recrystallization procedures 

resulted with different PSDs which was prerequisite for the following parts of research. 

 

 
Figure XYZ. PSD of original 

FSM-Ca sample

 

 
Figure XYZ. PSD of recrystallized 

FSM-Ca-1 sample
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Figure XYZ. PSD of recrystallized 

FSM-Ca-2 sample

 
Figure XYZ. PSD of recrystallized 

FSM-Ca-3 sample

 

  
Figure XYZ. PSD of recrystallized 

FSM-Ca-4 sample

 

 
Figure XYZ. PSD of recrystallized 

FSM-Ca-5 sample
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Figure XYZ. PSD of recrystallized FSM-Ca-6 sample 

 

4.4. Sample size and shape image analysis of Fosamprenavir Calcium samples 

 

Microscopic images of original and recrystallized samples of FSM-Ca are shown on 

Figures XYZ - ZYX. While crystals of original FSM-Ca-0 sample are smaller and their 

dimensions are mostly similar (uniform?), all recrystallized samples have needle-like shape of 

crystals with one dimension much bigger than the others. Also, it can be noted that the 

microscopic images are in accordance with PSDs shown on Figures XYZ-ZXY, since the 

highest percentage of small particles is in samples FSM-Ca-0 and FSM-Ca-4 which can also be 

seen on microscopic images. Možda još malo komentara jer ima velik broj slika! 

  



99 
 

 
Figure XYZ. Microscopic image of original FSM-Ca-0 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of original FSM-Ca-0 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-1 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-1 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-2 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-2 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-3 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-3 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-4 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-4 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-5 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-5 sample (magnification 10x) 
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Figure XYZ. Microscopic image of recrystallized FSM-Ca-6 sample (magnification 20x) 

 

 
Figure XYZ. Microscopic image of recrystallized FSM-Ca-6 sample (magnification 10x) 
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4.5. Chord length distributions 

 

Obtained CLD data for different FSM-Ca samples is shown on Figures XYZ-YXZ.. For 

each sample, except FSM-Ca-6, there are multiple graphs of curves. On each graph CLDs of 

different amount of suspended FSM-Ca is presented. Since FSM-Ca-6 CLD samples were 

obtained during recrystallization, there is only one graph in the Figure XYZ. Data on Figure 

xxx represents samples after the crystallization process, i.e. with fixed temperature and mixing 

rate. High repeatability of CLD measurements for particular samples can be observed on 

Figures XYZ-ZXY. Multiple CLD curves of the same amount of particular FSM-Ca sample are 

almost completely overlapping. Also, it can be seen that sensitivity of the measurement for 

bigger particles is decreasing with higher amount of suspended crystalline material. Figure 

XYZ shows results of sensitivity analysis of FBRM measurement when amount of crystalline 

sample is increasing. With increased amount of crystalline material in the suspension, the 

sensitivity of measurement is decreasing due to decreased “field of view” of FBRM probe, 

which results with lower number of distinguishable counts. This effect is best observed in multi-

modal CLDs (FSM-Ca-4, FSM-Ca-5). 



107 
 

 
Figure XYZ. CLD of original FSM-Ca-0 sample (different 

amounts of suspended FSM-Ca)

 
Figure XYZ. CLD of recrystallized FSM-Ca-1 sample 

(different amounts of suspended FSM-Ca)
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Figure XYZ. CLD of recrystallized FSM-Ca-2 sample 

(different amounts of suspended FSM-Ca)

 
Figure XYZ. CLD of recrystallized FSM-Ca-3 sample 

(different amounts of suspended FSM-Ca)
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Figure XYZ. CLD of recrystallized FSM-Ca-4 sample 

(different amounts of suspended FSM-Ca)

 
Figure XYZ. CLD of recrystallized FSM-Ca-5 sample 

(different amounts of suspended FSM-Ca)



110 
 

 
Figure XYZ. CLD of recrystallized FSM-Ca-6 sample 

 

 
Figure XYZ. Sensitivity of FBRM measurement for different FSM-Ca crystalline samples 
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4.6. Principal Component Analysis of Chord Length Distributions 

 

PCA analysis was conducted on acquired CLD data with purpose to detect outliers and 

better interpretation of data set. Prior to conducting PCA analysis data was centered and scaled. 

CLD data of each crystalline sample was first individually analysed. After outliers were 

detected and removed, the remaining data were combined and re-run through PCA analysis. 

Table xy reveals that almost all variance in the data is explained by the first two components.  

The position of loading vectors on the Figure XY reveals that PC-1 mainly describes the amount 

of crystalline sample in size classes with higher number of observed particles, while PC-2 

mostly describes the amount of crystalline sample in classes with lower number of observed 

particles. Loading vectors are arranged in the counter-clockwise manner with lower size classes 

starting in bottom-right quadrant and the highest size classes finishing in the upper-left 

quadrant. Exception from this observation is FSM-Ca-6 sample. This can be attributed to the 

fact that CLD samples of FSM-Ca-6 were taken during crystallization process, while CLD data 

for other samples was taken with constant process conditions (!). The biplots of loadings for 

different FSM-Ca samples are shown on Figures XY-YZ. 

 

Table XY Explained variance with the first four principal components 

Explained variance, % (iznad PC-1 …) 
ovdje: Sample ili sl. PC-1 PC-2 PC-3 PC-4 

FSM-Ca-0 71,36 14,09 1,66 1,25 

FSM-Ca-1 79,66 5,50 2,18 2,02 

FSM-Ca-2 83,31 5,86 1,72 1,23 

FSM-Ca-3 84,06 4,29 2,35 1,71 

FSM-Ca-4 81,93 8,33 1,29 1,15 

FSM-Ca-5 88,08 2,79 2,17 1,20 

FSM-Ca-6 52,12 21,84 5,02 4,28 
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Fig. XY, Biplot of FSM-Ca-0 loadings 

 

 
Fig. XY, Biplot of FSM-Ca-1 loadings 
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Fig. XY, Biplot of FSM-Ca-2 loadings 

 

 
Fig. XY, Biplot of FSM-Ca-3 loadings 
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Fig. XY, Biplot of FSM-Ca-4 loadings 

 

 
Fig. XY, Biplot of FSM-Ca-5 loadings 
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Fig. XY, Biplot of FSM-Ca-6 loadings 

 

Biplot charts of scores are shown on Figures XY-YZ. In cases of smaller amounts of 

suspended crystalline sample, CLD samples are arranged roughly vertically for the same 

amount of suspended sample, i.e. their PC-1 coordinates are similar. For higher amounts of 

suspended crystalline sample distinction between the different amounts is lost, and CLD 

samples are continuously arranged from (low PC-1, high PC-2) positions toward (high PC-1, 

low PC-2) positions in biplot chart. Exception from this observation is FSM-Ca-5 sample, 

where values of PC-1 component on X-axis shows the same behaviour but values of PC-2 on 

Y-axis are inverted in comparison with biplots of other samples. In addition, for FSM-Ca-6 

there is no vertical arrangement of the samples with similar values of PC-1 because samples 

were taken during crystallization, i.e. number of suspended particles was increasing 

continuously. Samples marked by green squares are suspected as outliers based on deviation 

from other samples of the same amount of crystalline sample.  Most of the outlier samples are 

the ones taken immediately after adding the additional amount of crystalline sample to the 

suspension. Biplots of the scores reveal that samples with lower added crystalline sample have 

smaller PC-1 values, while adding crystalline sample increases PC-1 values. PC-2 values 

depend on small differences in distributions of particles within size classes for particular 

crystalline sample added. 
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Fig. XY, Biplot of FSM-Ca-0 scores 

 

 
Fig. XY, Biplot of FSM-Ca-1 scores 

 

 
Fig. XY, Biplot of FSM-Ca-2 scores 
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Fig. XY, Biplot of FSM-Ca-3 scores 

 

 
Fig. XY, Biplot of FSM-Ca-4 scores 
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Fig. XY, Biplot of FSM-Ca-5 scores 

 

 
Fig. XY, Biplot of FSM-Ca-6 scores 

 

 
4.7. Calibration model development based on Partial Least Squares Regression 

methodology 

 

After PCA analysis of complete CLD dataset outliers were detected, and data was 

interpreted. Follows development of a calibration model for real-time CSD monitoring based 

on CLD measurement using PLSR method. During the model development, few approaches 

were tested: dataset with and without detected outliers, scaled and unscaled dataset. Also, effect 

of different number of factors in PLSR model on the model performance was tested. Cross-

validation was performed for validating the model and evaluating the results using 10 Monte-

Carlo iterations with 20 % of data randomly left out in each iteration used for model testing. 

The models with maximal number of factors using unscaled and scaled data were tested to find 

out suitable number of factors for initial model testing. Explained variance in Y matrix (CSD 

data) vs. number of factors is shown on Figure XY for unscaled data and Figure YZ for scaled 

data. Selected preliminary number of factors was 20, since adding more factors was not 

improving model significantly. Using unscaled data for model development resulted with 

higher final value of explained variance in Y data. Also, lower number of factors is needed for 

achieving the same explained variance in Y data. 
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Fig. XY, Explained variance vs. number of factors for unscaled data PLSR model 

 

 
Fig. XY, Explained variance vs. number of factors for scaled data PLSR model 

 
In addition, the impact of data preprocessing, i.e. effect of removing suspected outliers 

from dataset and scaling the data was evaluated. Four variants of models were developed: A) 

complete unscaled dataset, B) complete scaled dataset, C) unscaled dataset with removed 

outliers, D) scaled dataset with removed outliers.  

Calculated R2s are shown in Table XY. R2 was calculated for matching of one 

randomly picked CSD calculated by model with its given CSD, in each crystalline sample of 

FSM-Ca. Also, cumulative R2 was calculated for whole validation dataset. All R2s for single 

samples are near 100%, while cumulative R2 is near 90% in all models. Different approaches 
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in data preprocessing resulted with similar model accuracy with differences of 1 %, except in 

FSM-Ca-6 sample where that difference is ~5 %. 

Figures XY-YZ compare measured vs. calculated CSD from four differently 

preprocessed datasets for every crystalline sample. More cases of data with excluded outliers 

resulted with better fit in comparison with the whole dataset models. However, there is 

possibility that some of the suspected outliers should be included in modelling dataset, seeing 

that the small peaks are predicted in cases FSM-Ca-0 C, FSM-Ca-4 C, FSM-Ca-4 D where 

they do not exist in experimental CSD data. Scaling of the data does not affect quality of 

model significantly, and the models developed from unscaled data require less PLS factors. 

Accordingly, unscaled data models were picked for further analysis. 

 

Table XY. R2 for models developed on different input datasets 

Fit parameter R2, 
% 

All data, 
unscaled All data, scaled 

Without 
outliers, 
unscaled 

Without 
outliers, scaled 

Cumulative 86,99 87,00 88,02 87,38 

FSM-Ca-0 99,66 99,80 99,88 99,98 

FSM-Ca-1 99,10 98,62 99,30 98,25 

FSM-Ca-2 98,13 97,78 97,82 97,41 

FSM-Ca-3 98,93 98,94 99,13 99,26 

FSM-Ca-4 99,54 99,63 99,53 99,12 

FSM-Ca-5 98,82 98,72 98,15 98,75 

FSM-Ca-6 97,65 94,54 99,41 99,81 
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Fig. XY, Comparison between measured and calculated FSM-Ca-0 

CSD for A) All data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled

 
Fig. XY, Comparison between measured and calculated FSM-Ca-1 

CSD for A) All data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled
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Fig. XY, Comparison between measured and calculated FSM-Ca-2 

CSD for A) all data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled

 
Fig. XY, Comparison between measured and calculated FSM-Ca-3 

CSD for A) All data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled
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Fig. XY, Comparison between measured and calculated FSM-Ca-4 

CSD for A) All data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled

 
Fig. XY, Comparison between measured and calculated FSM-Ca-5 

CSD for A) All data, unscaled; B) All data, scaled; C) Excluded 

outliers, unscaled; D) Excluded outliers, scaled
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Fig. XY, Comparison between measured and calculated FSM-Ca-6 CSD for A) All data, 

unscaled; B) All data, scaled; C) Excluded outliers, unscaled; D) Excluded outliers, scaled 

 

Ultimately, the impact of the number of PLS factors on model accuracy was examined. 

Model was developed using unscaled dataset with removed outliers. Number of PLS factors 

was altered to determine its impact on the model accuracy. The results for the models with 10 

to 5 PLS factors are presented. Using higher number of factors would lead to overfitting since 

explained variance in output data is not increasing significantly after 10 factors, while using 

less than six factors results with lower model accuracy which can be seen in Table XYZ. 

PLS factors impact on model accuracy is shown in Table XYZ. Smaller number of components 

results with lower R2 for cumulative validation dataset. R2 of single sample validation datasets 

is higher and more similar for different number of factors. The greatest impact of altering factor 

number can be noticed between 5th and 6th factor. There is significant increase in R2 for samples 

FSM-Ca-3, FSM-Ca-5 and somewhat significant for sample FSM-Ca-6 when 6th factor is 

included in model. The explanation is that the 6th factor explains third peak in data (around 100 

μm particle size range). Based on the statistics optimal number of PLS factors for model should 

be from 6 to 8. 

The comparison of models with different number of factors can be seen on Figures XY-

YZ. Simpler CSDs (FSM-Ca-0 and FSM-Ca-4) are well predicted even with lower number of 

factors in model, while more complex CSD samples require higher number of factors. 
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Table XYZ. R2 parameter for models developed with different number of PLS factors 

Fit parameter R2, % Number of PLS factors 
10 9 8 7 6 5 

Cumulative 88,02 87,14 86,46 84,93 83,14 76,13 
FSM-Ca-0 99,88 99,91 99,90 99,86 99,32 99,91 
FSM-Ca-1 99,30 99,22 97,49 98,72 97,38 97,95 
FSM-Ca-2 97,82 98,15 97,66 96,55 96,44 96,83 
FSM-Ca-3 99,13 99,22 99,60 98,75 96,51 83,93 
FSM-Ca-4 99,53 99,68 99,70 99,64 99,73 99,24 
FSM-Ca-5 98,15 97,39 98,01 97,68 97,55 88,89 
FSM-Ca-6 99,41 99,77 99,55 97,68 97,84 94,02 

Explained variance in Y, % 87,28 86,46 85,50 83,81 81,51 74,24 
 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-0 CSD  

with different number of PLS factors 
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Fig. XY, Comparison between measured and calculated FSM-Ca-1 CSD  

with different number of PLS factors 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-2 CSD  

with different number of PLS factors 
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Fig. XY, Comparison between measured and calculated FSM-Ca-3 CSD  

with different number of PLS factors 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-4 CSD  

with different number of PLS factors 
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Fig. XY, Comparison between measured and calculated FSM-Ca-5 CSD  

with different number of PLS factors 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-6 CSD  

with different number of PLS factors 

 

Besides cross-validation, models were also developed and validated using approach of 

combined test-set and cross-validation. As expected, results were not as good as with regular 

cross-validation, since in used validation approach all data from single FSM-Ca sample was 
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omitted in model development, and later used for model testing. Afterwards, average was 

calculated for all test-set validation sequences, thus giving this approach a cross-validation 

component and ensuring good generalization capability of the developed model. Results of 

testing models on omitted test-set data are shown in Table XY. It can be seen that models can 

predict CSD of FSM-Ca-0, FSM-Ca-1, FSM-Ca-2 and FSM-Ca-3 with high accuracy, R2 > 

90%. Models for FSM-Ca-5 and FSM-Ca-6 are predicting CSDs with lower accuracy, R2 ≈ 70-

82%, while sample FSM-Ca-4 cannot be predicted accurately since the correlation between 

PSD and CLD for FSM-Ca-4 evidently differs from CSD-CLD correlation of other samples. 

Possible reason for that could be higher percentage of smaller particles in sample FSM-Ca-4 

opposed to the other recrystallized samples, as can be seen on Figure XYZ. Model developed 

with 6 factors has best cumulative results indicating it should be used for real-time monitoring 

of FSM-Ca CSD. Results of the combined test-set and cross-validation data with different 

numbers of PLS factors are shown on Figures XY-YZ. 

 

Table XYZ. R2 for models developed with different number of PLS factors with test-set 

validation 

Fit parameter R2, % 
Number of PLS factors 

10 9 8 7 6 5 
Cumulative 72,86 72,09 73,44 73,51 74,48 69,45 

Cumulative (excluded FSM-Ca-4) 85,00 84,10 85,68 85,77 86,90 81,02 
FSM-Ca-0 88,67 86,97 90,89 92,29 90,94 71,58 
FSM-Ca-1 97,07 96,79 95,98 98,30 97,34 98,32 
FSM-Ca-2 95,61 96,13 96,18 95,36 95,32 95,71 
FSM-Ca-3 93,19 93,16 92,28 87,81 87,53 80,91 
FSM-Ca-4 0,00 0,00 0,00 0,00 0,00 0,00 
FSM-Ca-5 64,50 58,58 66,47 63,34 70,77 57,29 
FSM-Ca-6 70,96 72,97 72,26 77,50 79,47 82,33 
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Fig. XY, Comparison between measured and calculated FSM-Ca-0 CSD with  

different number of PLS factors, test-set validation 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-1 CSD  

with different number of PLS factors, test-set validation 
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Fig. XY Comparison between measured and calculated FSM-Ca-2 CSD  

with different number of PLS factors, test-set validation 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-3 CSD  

with different number of PLS factors, test-set validation 
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Fig. XY, Comparison between measured and calculated FSM-Ca-4 CSD  

with different number of PLS factors, test-set validation 

 

 

 

 
Fig. XY, Comparison between measured and calculated FSM-Ca-5 CSD  

with different number of PLS factors, test-set validation 
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Fig. XY, Comparison between measured and calculated FSM-Ca-6 CSD  

with different number of PLS factors, test-set validation 

 

4.8. Calibration model development based on Artificial Neural Network methodology 

 

The first part of the investigation related to the ANN implementation for development 

of calibration model for FSMA-Ca CSD to PSD was to check applicability of common data 

processing operations – normalization and standardization. Other ANN training parameters 

were MSE as validation criterion with randomly picked datapoints for 10-fold cross validation, 

Tanh, Sigm and ReLu as activation functions and number of neurons were changed between 1 

and 300. Only one hidden layer was used. Used training algorithm was ADAM. Dataset was 

raw, as originally collected, including possible outliers. For patience and baseline parameters 

default values were used. Results and parameters of conducted ANN training runs can be seen 

in Table XYZ. 
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Table XYZ. Results and parameters of conducted ANN training runs 

Run Tanh ReLu Sigmoid 
Neurons R2, % MSE, / Neurons R2, % MSE, / Neurons R2, % MSE, / 

1. 176 99.97 0.352 206 99.99 0.038 21 99.99 0.351 
2. 66 99.98 0.001 291 99.97 0.001 21 99.99 0.001 
3. 21 99.99 0.008 / / / / / / 
4. 16 99.99 0.001 266 99.98 0.001 171 99.97 0.001 
5. 21 99.99 0.004 / / / / / / 
6. 261 99.11 10316.4 266 99.99 11.4 216 99.75 8245.7 
7. 296 99.96 0.00005 196 99.96 0.00013 111 99.96 0.00009 
8. 231 99.97 0.0002 106 99.97 0.0002 196 99.97 0.0002 
9. 81 99.95 0.00008 281 99.97 0.00009 241 99.95 0.00010 
10. 80 95.25 0.0002 56 94.92 0.0003 58 95.01 0.0003 
11. 221 99.98 0.0003 / / / / / / 
12. 2 48.23 0.507 3 52.10 0.706 3 44.43 0.542 
13. 2 52.14 0.440 3 51.79 0.616 3 43.57 0.573 
14. 1 46.86 0.441 8 51.30 0.422 2 48.70 0.436 
15. 1 47.45 0.437 3 51.08 0.448 2 48.80 0.434 
16. 4 41.20 0.130 12 46.45 0.121 68 39.03 0.141 
17. 7 1.44 0.968 3 0.00 0.792 9 0.00 1.028 
18. 10 46.86 0.115 9 44.75 0.125 10 45.18 0.112 
19. 9 35.86 0.497 10 31.00 0.525 9 39.23 0.484 
20. 10 47.76 0.115 10 45.00 0.121 9 45.05 0.113 
21. 10 35.36 0.501 9 31.17 0.529 9 34.50 0.506 

 

First run was done without any data processing operations prior to network training. 

Best ANN model developed with Tanh activation function had R2 of 99.97% and MSE of 0.352 

with 176 neurons in hidden layer. Best ANN model developed with ReLu activation function 

had R2 of 99.99% and MSE of 0.038 with 206 neurons in hidden layer. Best ANN model 

developed with Sigmoid activation function had R2 of 99.99% and MSE of 0.351 with 21 

neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure XY and YZ. 

It can be seen for all three activation functions that results with different numbers of neurons 

were not stable, meaning error was not decreasing with higher number of neurons. All three 

activation functions had similar results in validation, but advantage could be given to Sigmoid 

activation because it provided similar result with smallest number of neurons in hidden layer. 
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a)                                                                     b) 

Fig. XY, Results of first ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of first ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of first ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for first ANN training run - 

a) R2, b) MSE 

 

Second run was done using just normalization (0-1) prior to network training. Best ANN 

model developed with Tanh activation function had R2 of 99.98% and MSE of 0.001 with 66 
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neurons in hidden layer. Best ANN model developed with ReLu activation function had R2 of 

99.97% and MSE of 0.001 with 291 neurons in hidden layer. Best ANN model developed with 

Sigmoid activation function had R2 of 99.99% and MSE of 0.001 with 21 neurons in hidden 

layer. Resulting R2 and MSE for test set can be seen on Figure XY and YZ. After applying 

normalization (0-1) to data prior to modelling, all three activation functions resulted with error 

decreasing with higher number of neurons, as opposed to the first run without any data 

preconditioning. All three activation functions had similar results in validation, but advantage 

could be given to Sigmoid activation because it provided similar result with smallest number 

of neurons in hidden layer. 

  
a)                                                                     b) 

Fig. XY, Results of second ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of second ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 
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Fig. XY, Results of second ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for second ANN training 

run - a) R2, b) MSE 

 

Third run was done using just Tanh activation function with data normalization ((-1) -

1) prior to network training. This setting of model parameters was used because Tanh activation 

function can handle negative inputs. Developed ANN model had R2 of 99.99% and MSE of 

0.008 with 21 neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure 

XY. In comparison with prior runs of ANN model training with Tanh activation function it can 

be seen that model accuracy is similar, but number of neurons needed to accomplish it is 

smaller. Quality of this model can is on par with models developed in first and second run using 

Sigmoid activation function. 

 

  
a)                                                                     b) 

Fig. XY, Results of third ANN training run with Tanh activation function - a) R2, b) MSE 

 

Fourth run was done using normalization (0-1) and standardization of data prior to 

network training. Best ANN model developed with Tanh activation function had R2 of 99.99% 

and MSE of 0.001 with 16 neurons in hidden layer. Best ANN model developed with ReLu 
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activation function had R2 of 99.98% and MSE of 0.001 with 266 neurons in hidden layer. Best 

ANN model developed with Sigmoid activation function had R2 of 99.97% and MSE of 0.001 

with 171 neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure XY 

and YZ. After applying normalization (0-1) and standardization to data prior to modelling, all 

three activation functions resulted with high model accuracy. Results show that this 

combination of data preconditioning best suits Tanh activation functions since much smaller 

number of neurons in hidden layer was needed to accomplish result. This was best model 

developed after fist four runs taking into account accuracy and number of neurons in hidden 

layer. 

 

  
a)                                                                     b) 

Fig. XY, Results of fourth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of fourth ANN training run with ReLu activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Results of fourth ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for fourth ANN training 

run - a) R2, b) MSE 

 

Fifth run was done using just Tanh activation function, normalization ((-1) - 1) and 

standardization of data prior to network training. This setting of model parameters was used 

because previously using normalization range of (-1) – 1 shown improvement in results when 

Tanh activation function is used. Developed ANN model had R2 of 99.99% and MSE of 0.004 

with 21 neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure XY. 

In comparison with third and fourth runs of ANN model training with Tanh activation function 

it can be seen that model accuracy and number of neurons needed to accomplish are similar.  

 

  
a)                                                                     b) 

Fig. XY, Results of fifth ANN training run with Tanh activation function - a) R2, b) MSE 

 

These five runs concluded first part of investigation related to the ANN implementation 

for development of calibration model for FSM-Ca CSD to PSD. Three different activation 

functions were tested with different data preconditioning procedures. Models developed using 

raw data shown inferior results to the models developed with normalization and standardization. 
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Best and generally similar results of ANN model development were achieved with Sigmoid 

activation function with data normalized in range 0 - 1, Tanh activation function with data 

normalized in range (-1) – 1, Tanh activation function with data normalization in range 0 – 1 

and standardization, Tanh activation function with data normalization in range (-1) – 1 and 

standardization. Models developed using ReLu in this part of investigation always needed 

bigger number of neurons in hidden layer to achieve results of comparable accuracy to models 

developed with Tanh and Sigmoid activation functions. 

Next part of the investigation related to the ANN implementation for development of 

calibration model for FSM-Ca CSD to PSD was to check impact of removing potential outliers 

from collected data. Other ANN training parameters were MSE as validation criterion with 

randomly picked datapoints for 10-fold cross validation, Tanh, Sigm and ReLu as activation 

functions, normalization and standardization for data processing, number of neurons were 

changed between 1 and 300. Only one hidden layer was used. Used training algorithm was 

ADAM. For patience and baseline parameters default values were used. 

Sixth run was done without normalization and standardization using data with removed 

outliers prior to network training. Best ANN model developed with Tanh activation function 

had R2 of 99.11% and MSE of 10314.4 with 261 neurons in hidden layer. Best ANN model 

developed with ReLu activation function had R2 of 99.99% and MSE of 11.4 with 266 neurons 

in hidden layer. Best ANN model developed with Sigmoid activation function had R2 of 99.75% 

and MSE of 8245.7 with 216 neurons in hidden layer. Resulting R2 and MSE for test set can be 

seen on Figure XY and YZ. Similarly to the first run where normalization and standardization 

weren’t applied, this run’s results with different numbers of neurons were also not stable, 

meaning error was not continuously decreasing with higher number of neurons, although less 

than in first run. All three activation functions had similar results in validation, but advantage 

could be given to ReLu activation because it provided best result with similar number of 

neurons in hidden layer. One more observation can be made from first and sixth run. When 

normalization and standardization are not applied to data prior to ANN model development, 

ReLu will result with highest accuracy model. 
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a)                                                                     b) 

Fig. XY, Results of sixth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of sixth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of sixth ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 
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Fig. XY, Comparison of results with different activation functions for sixth ANN training run 

- a) R2, b) MSE 

 

Seventh run was done with normalization (0 – 1) using data with removed outliers prior 

to network training. Best ANN model developed with Tanh activation function had R2 of 

99.96% and MSE of 0.00005 with 296 neurons in hidden layer. Best ANN model developed 

with ReLu activation function had R2 of 99.96% and MSE of 0.00013 with 196 neurons in 

hidden layer. Best ANN model developed with Sigmoid activation function had R2 of 99.96% 

and MSE of 0.00009 with 111 neurons in hidden layer. Resulting R2 and MSE for test set can 

be seen on Figure XY and YZ. Confirming observation from the second run, after applying 

normalization (0-1) to data prior to modelling, all three activation functions resulted with error 

continuously decreasing with higher number of neurons. All three activation functions had 

similar results in validation, but advantage could be given to Sigmoid activation because it 

provided similar result with smallest number of neurons in hidden layer. This is also same as 

the observation in the second run, therefore it can be concluded that when just normalization is 

applied Sigmoid activation function will result with model of good accuracy, but with 

significantly lower number of neurons in hidden layer. 

 

  
a)                                                                     b) 

Fig. XY, Results of seventh ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 
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Fig. XY, Results of seventh ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of seventh ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for seventh ANN training 

run - a) R2, b) MSE 

 

Eighth run was done with normalization ((-1) – 1) using data with removed outliers prior 

to network training. Best ANN model developed with Tanh activation function had R2 of 

99.97% and MSE of 0.0002 with 231 neurons in hidden layer. Best ANN model developed with 

ReLu activation function had R2 of 99.97% and MSE of 0.0002 with 106 neurons in hidden 

layer. Best ANN model developed with Sigmoid activation function had R2 of 99.97% and 

MSE of 0.0002 with 196 neurons in hidden layer. Resulting R2 and MSE for test set can be seen 

on Figure XY and YZ. This result is slightly different from expected. Because of normalization 

in range (-1) – 1, it was expected that Tanh will yield accurate model with simplest structure 

what would be follow from the observation in the third run. In this run all models resulted with 

similar accuracy, but ReLu resulted with significantly simpler model structure. 
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a)                                                                     b) 

Fig. XY, Results of eighth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of eighth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of eighth ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 
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Fig. XY, Comparison of results with different activation functions for eighth ANN training 

run - a) R2, b) MSE 

 

Ninth run was done with normalization (0 – 1) and standardization, using data with 

removed outliers prior to network training. Best ANN model developed with Tanh activation 

function had R2 of 99.95% and MSE of 0.00008 with 81 neurons in hidden layer. Best ANN 

model developed with ReLu activation function had R2 of 99.97% and MSE of 0.00009 with 

281 neurons in hidden layer. Best ANN model developed with Sigmoid activation function had 

R2 of 99.95% and MSE of 0.0001 with 241 neurons in hidden layer. Resulting R2 and MSE for 

test set can be seen on Figure XY and YZ. After applying normalization (0-1) and 

standardization to data prior to modelling, all three activation functions resulted with high 

model accuracy. Similarly to fourth run, results show that this combination of data 

preconditioning best suits Tanh activation functions since much smaller number of neurons in 

hidden layer was needed to accomplish result. 

 

  
a)                                                                     b) 

Fig. XY, Results of ninth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of ninth ANN training run with ReLu activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Results of ninth ANN training run with Sigmoid activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for ninth ANN training run 

- a) R2, b) MSE 

 

Tenth run was done with normalization (0 – 1) and standardization, using data with 

removed outliers prior to network training. Since in prior runs very high accuracy was achieved 

by all three activation functions, in this run just up to 100 neurons was used in order to have 

better insight in difference in results when different activation functions are used. Best ANN 

model developed with Tanh activation function had R2 of 95.25% and MSE of 0.0002 with 80 

neurons in hidden layer. Best ANN model developed with ReLu activation function had R2 of 

94.92% and MSE of 0.0003 with 56 neurons in hidden layer. Best ANN model developed with 

Sigmoid activation function had R2 of 95.01% and MSE of 0.0003 with 58 neurons in hidden 

layer. Resulting R2 and MSE for test set can be seen on Figure XY and YZ. After applying 

normalization (0-1) and standardization to data prior to modelling, all three activation functions 

resulted with high model accuracy. It can be seen that Tanh method achieved highest model 

accuracy, but also needed higher number of neurons to achieve it. In comparison between ninth 

and tenth run it can be seen that Tanh is able to achieve highest accuracy result with the smallest 

number of neurons, but if very high accuracy is not that important, then ReLu and Sigmoid will 

need even smaller number of neurons to achieve satisfactory result.  
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a)                                                                     b) 

Fig. XY, Results of tenth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of tenth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of tenth ANN training run with Sigmoid activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for tenth ANN training run 

- a) R2, b) MSE 

 

Eleventh run was done using just Tanh for activation function, with normalization ((-1) 

– 1) and standardization, using data with removed outliers prior to network training ANN model 

developed with Tanh activation function had R2 of 99.98% and MSE of 0.0003 with 221 

neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure XY and YZ. 

This result is in accordance with the eighth run which had similar settings for model 

development. If we compare eighth and eleventh runs with fourth and fifth runs, difference in 

procedure was that outliers were removed in eight and eleventh run, models with outliers 

included resulted with higher accuracy achieved by smaller number of neurons in hidden layer. 

 

  
a)                                                                     b) 

Fig. XY, Results of eleventh ANN training run with Tanh activation function - a) R2, b) MSE 

 

Training runs 6 to 11 concluded second part of investigation related to the ANN 

implementation for development of calibration model for FSM-Ca CSD to PSD. Three different 

activation functions were tested with different data preconditioning procedures. Important 

difference from the first five runs was that detected outliers were removed from data used for 

ANN model training. Models developed without outliers in data resulted with somewhat 

smaller R2 and smaller MSE. Explanation for this is that data without outliers was more 

uniform. With outliers in training data set small variations in data were overshadowed by big 

variations in data caused by outliers. Without outliers these smaller variations became more 

visible to the model and therefore caused slightly smaller R2. MSE values are generally smaller 

because big variations in data are not present anymore, therefore normalization and 

standardization preconditioning procedures resulted with smaller numbers from which smaller 
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MSE values are calculated. Best ANN model was developed in ninth training run with Tanh 

activation function with data standardized and normalized in range 0 – 1. Tenth run with the 

same model development parameters, but with number of neurons limited to 100, shown that 

accurate enough models can be achieved even with smaller number of neurons while having 

simpler model structure.  

After the investigation related to the impact of removing outliers from data on ANN 

training, next step was to implement combined cross-validation - test set validation 

methodology. Since there were 7 different PSD samples of FSM-Ca, dataset was divided in 7 

folds, each fold comprised of all datapoints for one particular FSM-Ca PSD sample. After that, 

typical cross-validation was performed, with 7 cycles, taking out from training set one of the 

FSM-Ca samples in each cycle and using it for validation. Other ANN training parameters were 

MSE as validation criterion, Tanh, Sigm and ReLu as activation functions, normalization and 

standardization for data processing, number of neurons were changed between 1 and 100. Only 

one hidden layer was used. Data without outliers was used for ANN training. Used training 

algorithm was ADAM. Patience and baseline parameters were introduced as variable 

parameters of ANN training. 

Twelfth and thirteenth run were done with normalization (0 – 1) and standardization, 

using data without outliers prior to network training. Up to 100 neurons were used. Patience 

and baseline parameters were kept at default values. Combined cross-validation – test set 

validation was used for validating developed ANNs. Two runs with the same training 

parameters were run in order to investigate is how is different data randomization during two 

separate training and validation runs effecting accuracy of the models. Best ANN model 

developed with Tanh activation function had R2 of 52.14% and MSE of 0.440 with 2 neurons 

in hidden layer. Best ANN model developed with ReLu activation function had R2 of 52.10% 

and MSE of 0.706 with 3 neurons in hidden layer. Best ANN model developed with Sigmoid 

activation function had R2 of 44.43% and MSE of 0.542 with 3 neurons in hidden layer. 

Resulting R2 and MSE for test set can be seen on Figure XY and YZ. After applying combined 

cross-validation – test set validation method, model accuracy has decreased as was expected. 

Data used for validation was completely omitted from training data set. Afterwards, validation 

was done using omitted data set. This made validation data set completely independent from 

the training data set. When compared with previous training runs, resulting model accuracies 

were much lower, but these are the real representatives of how good developed ANN models 

are at generalization. Results of twelfth and thirteenth training runs are similar, meaning there 
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is no significant effect of randomization when data is divided in training and validation data 

set. This is related to the data not omitted manually, but the data which was left in training set. 

  
a)                                                                     b) 

Fig. XY, Results of twelfth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of twelfth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of twelfth ANN training run with Sigmoid activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for twelfth ANN training 

run - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of thirteenth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of thirteenth ANN training run with ReLu activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Results of thirteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for thirteenth ANN training 

run - a) R2, b) MSE 

 

Fourteenth run was done with normalization ((-1) – 1) and standardization, using data 

without outliers prior to network training. Up to 100 neurons were used. Patience parameter 

was set to 3, and baseline parameter was kept at default value. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 46.86% and MSE of 0.441 with 1 neuron in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 51.30% and MSE of 0.422 

with 8 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 48.70% and MSE of 0.436 with 2 neurons in hidden layer. Resulting R2 and MSE for 

test set can be seen on Figure XY and YZ. Similar to the twelfth and thirteenth runs, after 

applying combined cross-validation – test set validation method, model accuracy is smaller than 

in previous runs. Model accuracies are similar to the ones in twelfth and thirteenth runs. Value 

of 3 for patience parameter does not seem to affect model accuracy or structure that much. Only 

real improvement can be seen for ANN model developed using Sigmoid activation function. 

  
a)                                                                     b) 
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Fig. XY, Results of fourteenth ANN training run with Tanh activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of fourteenth ANN training run with ReLu activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of fourteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for fourteenth ANN 

training run - a) R2, b) MSE 
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Fifteenth run was done with normalization ((-1) – 1) and standardization, using data 

without outliers prior to network training. Up to 100 neurons were used. Patience parameter 

was set to 6, and baseline parameter was kept at default value. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 47.45% and MSE of 0.437 with 1 neuron in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 51.08% and MSE of 0.448 

with 3 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 48.80% and MSE of 0.434 with 2 neurons in hidden layer. Resulting R2 and MSE for 

test set can be seen on Figure XY and YZ. Model accuracies and structures are similar to the 

previous runs with cross-validation – test set validation method. Increased value of 6 for 

patience parameter does not seem to affect model accuracy or structure in this run. 

  
a)                                                                     b) 

Fig. XY, Results of fifteenth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of fifteenth ANN training run with ReLu activation function - a) R2, b) MSE 
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a)                                                                     b) 

Fig. XY, Results of fifteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for fifteenth ANN training 

run - a) R2, b) MSE 

 

Sixteenth run was done with normalization (0 – 1) and standardization, using data 

without outliers prior to network training. Up to 100 neurons were used. Patience parameter 

was set to 9, and baseline parameter was kept at default value. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 41.20% and MSE of 0.130 with 4 neurons in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 46.45% and MSE of 0.121 

with 12 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 39.03% and MSE of 0.141 with 68 neurons in hidden layer. Resulting R2 and MSE 

for test set can be seen on Figure XY and YZ. Model accuracies are smaller, and model 

structures are more complex compared to the previous runs with cross-validation – test set 

validation method. There are two potential causes for this, either the increased value of 9 for 

patience parameter, or the randomization of data for this training run picked data set which 

resulted with worse models. 
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a)                                                                     b) 

Fig. XY, Results of sixteenth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of sixteenth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of sixteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 
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a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for sixteenth ANN training 

run - a) R2, b) MSE 

 

Seventeenth run was done without normalization and standardization, using data 

without outliers prior to network training. Up to 10 neurons were used. Patience parameter was 

set to 9, and baseline parameter was kept at default value. Combined cross-validation – test set 

validation was used for validating developed ANNs. The goal of this run was to confirm the 

results from previous run, which shown worse results when higher value of patience parameter 

was used. Also, smaller limit for number of neurons was picked in order to have better overview 

how it affects model accuracy. Best ANN model developed with Tanh activation function had 

R2 of 1.44% and MSE of 0.968 with 7 neurons in hidden layer. Best ANN model developed 

with ReLu activation function had R2 of 0.00% and MSE of 0.792 with 3 neurons in hidden 

layer. Best ANN model developed with Sigmoid activation function had R2 of 0.00% and MSE 

of 1.028 with 9 neurons in hidden layer. Resulting R2 and MSE for test set can be seen on Figure 

XY and YZ. It can be seen that model accuracies without implementing normalization and 

standardization of data are very low when patience factor is set to 9. Based on the results of 

runs 14, 15, 16 and 17, for the following runs patience factor was set to the default value of the 

training algorithm. 

  
a)                                                                     b) 

Fig. XY, Results of seventeenth ANN training run with Tanh activation function - a) R2, b) 

MSE 
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a)                                                                     b) 

Fig. XY, Results of seventeenth ANN training run with ReLu activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of seventeenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for seventeenth ANN 

training run - a) R2, b) MSE 

 

Eighteenth run was done with normalization (0 – 1) and standardization, using data 

without outliers prior to network training. Up to 10 neurons were used. Patience parameter was 

kept at default value, and baseline parameter was set to 0.2. Combined cross-validation – test 
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set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 46.86% and MSE of 0.115 with 10 neurons in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 44.75% and MSE of 0.125 

with 9 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 45.18% and MSE of 0.112 with 10 neurons in hidden layer. Resulting R2 and MSE 

for test set can be seen on Figure XY and YZ. From the numbers of neurons close or at the limit 

it can be speculated that increasing number of neurons might yield models with higher accuracy. 

Accuracies of the ANN models from this run are smaller than the ones in runs 12 and 13. 

  
a)                                                                     b) 

Fig. XY, Results of eighteenth ANN training run with Tanh activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of eighteenth ANN training run with ReLu activation function - a) R2, b) 

MSE 
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a)                                                                     b) 

Fig. XY, Results of eighteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for eighteenth ANN 

training run - a) R2, b) MSE 

 

Nineteenth run was done with normalization ((-1) – 1) and standardization, using data 

without outliers prior to network training. Up to 10 neurons were used. Patience parameter was 

kept at default value, and baseline parameter was set to 0.2. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 35.86% and MSE of 0.497 with 9 neurons in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 31.00% and MSE of 0.525 

with 10 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 39.23% and MSE of 0.484 with 10 neurons in hidden layer. Resulting R2 and MSE 

for test set can be seen on Figure XY and YZ. From the numbers of neurons close or at the limit 

it can be speculated that increasing number of neurons might yield models with higher accuracy. 

Accuracies of the ANN models from this run are smaller than the ones in runs 12 and 13. 

  
a)                                                                     b) 

Fig. XY, Results of nineteenth ANN training run with Tanh activation function - a) R2, b) 

MSE 
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a)                                                                     b) 

Fig. XY, Results of nineteenth ANN training run with ReLu activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of nineteenth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for nineteenth ANN 

training run - a) R2, b) MSE 

 

Twentieth run was done with normalization (0 – 1) and standardization, using data 

without outliers prior to network training. Up to 10 neurons were used. Patience parameter was 
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kept at default value, and baseline parameter was set to 0.4. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 47.76% and MSE of 0.115 with 10 neurons in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 45.00% and MSE of 0.121 

with 10 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 45.05% and MSE of 0.113 with 9 neurons in hidden layer. Resulting R2 and MSE for 

test set can be seen on Figure XY and YZ. From the numbers of neurons close or at the limit it 

can be speculated that increasing number of neurons might yield models with higher accuracy. 

Accuracies of the ANN models from this run are smaller than the ones in runs 12 and 13. 

  
a)                                                                     b) 

Fig. XY, Results of twentieth ANN training run with Tanh activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of twentieth ANN training run with ReLu activation function - a) R2, b) MSE 

 

  
a)                                                                     b) 
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Fig. XY, Results of twentieth ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for twentieth ANN training 

run - a) R2, b) MSE 

 

Twenty first run was done with normalization ((-1) – 1) and standardization, using data 

without outliers prior to network training. Up to 10 neurons were used. Patience parameter was 

kept at default value, and baseline parameter was set to 0.4. Combined cross-validation – test 

set validation was used for validating developed ANNs. Best ANN model developed with Tanh 

activation function had R2 of 35.36% and MSE of 0.501 with 10 neurons in hidden layer. Best 

ANN model developed with ReLu activation function had R2 of 31.17% and MSE of 0.529 

with 9 neurons in hidden layer. Best ANN model developed with Sigmoid activation function 

had R2 of 34.50% and MSE of 0.506 with 9 neurons in hidden layer. Resulting R2 and MSE for 

test set can be seen on Figure XY and YZ. From the numbers of neurons close or at the limit it 

can be speculated that increasing number of neurons might yield models with higher accuracy. 

Accuracies of the ANN models from this run are smaller than the ones in runs 12 and 13. 

Comparing results of runs 18, 19, 20 and 21, it can be seen that with changed baseline 

parameter, models with normalization in range between 0 and 1 yielded better results than 

models with normalization in range between -1 and 1. 

  
a)                                                                     b) 
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Fig. XY, Results of twenty first ANN training run with Tanh activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of twenty first ANN training run with ReLu activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Results of twenty first ANN training run with Sigmoid activation function - a) R2, b) 

MSE 

 

  
a)                                                                     b) 

Fig. XY, Comparison of results with different activation functions for twenty first ANN 

training run - a) R2, b) MSE 
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Comparing the results from all the models developed using combined cross-validation 

– test set validation procedure, it can be seen that all the models (except models from 

seventeenth run) have yielded similar results with their R2 results being in range between 

31.00% and 52.14%. The best model was achieved in thirteenth run using Tanh activation 

function, 2 neurons in hidden layer, normalized and standardized data in range 0 - 1 with 

removed outliers. R2 validation criterion of that run was 52.14%. 

Based on summary results of developed ANN models it can be seen that they are highly 

dependent of the data presented for the training. Having that in mind, conclusion is that to 

achieve higher validation criteria values we would need to present better data sets during model 

development. This could be achieved in two ways, either to use more similar data with less 

variance, or to do more experiments and collect more data sets for different FSM-Ca PSDs. 

First approach would be wrong, because that way we would achieve models with better 

validation criteria during the model development, but when applied in real process, those 

models would fail to produce good measurement because their generalization ability is not 

good. Second approach would mean doing as much as possible experiments and collecting more 

samples of different FSM-Ca PSD-CLD combinations. The idea would be to collect as many 

as possible different data sets, which would then cover higher span of data variability. That way 

developed models would cover much broader variation in FSM-Ca PSDs, resulting in good 

generalization. Also, assumption is that in higher number of samples variation in data would be 

more linear, because gradual changes in PSD and CLD shapes would be covered. Currently, 

with our number of samples, each sample which is slightly more different from average will 

result in significantly increased model non-linearity. Unfortunately, additional experiments 

cannot be done anymore, therefore research is limited to the presented sets of data. 

If we compare results achieved using PLS regression and ANN models for development 

of calibration model of CLD to PSD measurement for FSM-Ca, it can be seen that on our 

datasets PLSR models achieved better results. Explanation for that lies in the nature of these 

two modelling approaches. While being more mathematically complex and able to explain non-

linear datasets, ANN approach also requires big datasets which cover as much as possible 

variation in data. Since our number of PSD-CLD data samples was relatively small, in our case 

PLSR approach was able to provide significantly better models for the given data. 
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5. CONCLUSION 

 

The aim of this study was to investigate the applicability of PLSR and ANN models for 

real-time monitoring of PSD during the batch crystallisation process. The results of the study 

show that these two methods have great potential. In addition to the main hypothesis, a new 

software application was also developed for real-time acquisition and monitoring of process 

data during the batch crystallisation process. Furthermore, the results for different batch 

crystallisation processes of fosamprenavir calcium and their products are presented. 

Principal component analysis of the recorded chord length distributions has shown that 

the measurement with the FBRM instrument provides good and linear results when the 

concentration of the solution is low. At higher concentrations, however, linearity is lost as the 

probe becomes supersaturated with the crystals in the solutions and can no longer perform an 

accurate measurement. 

The partial least squares regression method to develop a calibration model for the 

conversion of CLD to PSD for FSM-Ca showed promising results with the data obtained in this 

study. This model could be used for real-world monitoring of the FSM-Ca crystallisation 

process with good, but not perfect, accuracy. The model could be improved by collecting more 

recrystallised FCM-Ca samples to cover more data variations in the system. 

 The ANN models proved to be useful, but with the data from this study they were not 

able to reproduce sufficiently accurate measurement results for real-time monitoring of the 

FSM-Ca crystallisation process. To obtain models with higher accuracy and generalisation 

properties, many more data samples are needed. Due to their nature and mathematical 

superiority, ANN models should be able to provide better results than PLSR models with a 

sufficient amount of data. With the data available in this study, the simpler and more general 

PLS models were more suitable for real-time monitoring of the PSD of FSM-Ca during the 

batch crystallisation process. 

 The applicability of the presented empirical approach to develop a calibration model for 

the conversion of CLD to PSD data was confirmed in this study. There is a correlation between 

the CLD signal measured with the FBRM probe and the offline measured PSD of the crystalline 

samples. A prerequisite for a good empirical model to convert CLD to PSD data is the 

availability of a sufficient number of CLD-PSD data pairs covering different phases of the 

crystallisation process. The main advantage of the presented methods is the simple empirical 

model development procedure in contrast to complex theoretical models used to explain the 

relationship between CLD and PSD with limited accuracy. 
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