Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije Zavod za organsku kemiju

Tatjana Gazivoda Kraljević

sanskin spojeva Određivanje struktura organskih spojeva

Nastavni tekst odredivanis

SADRŽAJ:

1.	ULTRALJUBIČASTA – VIDLJIVA SPEKTROSKOPIJA (UV-VIS)	1
	1.1. Elektronski prijelazi	5
	1.2. Utjecaj otapala na UV-Vis spektar	8
	1.3. Utjecaj povećanja konjugacije na apsorpcijski spektar	10
	1.4. Vis spektroskopija	12
	1.5. Primjeri UV-Vis spektara	13
2.	INFRACRVENA SPEKTROSKOPIJA (IR)	18
	2.1. Vibracije kovalentnih veza u molekuli	20
	2.2. IR spektar i apsorpcijske vrpce	21
	2.3. Primjeri IR spektara	23
3.	NUKLEARNA MAGNETSKA REZONANCIJA (NMR)	30
	3.1. Spektralni parametri NMR-a	36
	3.1.1. Kemijski pomak i zasjenjenje	36
	3.1.1. Sprega spin-spin	39
	3.2. Spinski sustavi	43
	3.2.1. Dvospinski sustavi prvog i drugog reda,	44
	3.2.2. Trospinski sustavi prvog i drugog reda	45
	3.2.3. Četverospinski sustavi prvog i drugog reda	48
	3.2.4. Peterospinski sustavi prvog i drugog reda	49
	3.3. Nuklearni Overhauserov efekt (NOE)	50
4.	JEDNODIMENZIJSKE TEHNIKE NMR	50
	4.1. ¹ H NMR spektroskopija	51
	4.1.1. Interpretacija ¹ H NMR spektra	58
	4.1.2. Primjeri ¹ H NMR spektra	58
	4.2. ¹³ C NMR spektroskopija	73
	4.2.1. Primjeri ¹³ C NMR spektara	75
	4.2.2. Tehnika APT	81
	4.2.3. Tehnika DEPT	82
	4.2.4. Primjeri ¹ H i ¹³ C NMR spektara	84
	4.2.5. Primjeri APT i DEPT spektara	88
5.	DVODIMENZIJSKA (2D) NMR SPEKTROSKOPIJA	90
	5.1. Tehnike temeljene na skalarnom sprezanju	91
	5.1.1. Tehnika COSY	91

5.1.1.1. Primjeri COSY spektara	
5.1.2. Tehnika DQF-COSY	
5.1.3. Tehnika TOCSY	99
5.1.4. Tehnika INADEQUATE	100
5.1.5. Tehnika HETCOR	102
5.1.5.1. Primjeri HETCOR spektara	
5.1.6. Tehnika HMQC	105
5.1.7. Tehnika HSQC	
5.1.8. Tehnika HMBC	
5.2. Tehnike temeljene na dipolnom sprezanju	
5.2.1. Tehnika NOESY	
5.2.2. Tehnika ROESY	109
6. SPEKTROMETRIJA MASA (MS).	111
6.1. Spektar masa alkohola	116
6.2. Spektar masa aldehida	117
6.3. Spektar masa alkana	117
6.4. Spektar masa amida	118
6.5. Spektar masa amina	119
6.6. Spektar masa aromatskih spojeva	120
6.7. Spektar masa karboksilnih kiselina i estera	123
6.8. Spektar masa etera.	124
6.9. Spektar masa halogenida	125
6.10. Spektar masa ketona	126
7. KIROOPTIČKE METODE	127
7.1. Kružni dikroizam (CD) i optička rotacijska disperzija (ORD)	128
7.2. Primjeri CD i ORD spektara	131
8. ZADATCI ZA VJEŽBU	135

1. ULTRALJUBIČASTA-VIDLJIVA SPEKTROSKOPIJA (UV-VIS)¹⁻³

Ultraljubičasta-vidljiva spektroskopija se najviše koristi za detektiranje konjugiranih sustava koji imaju snažne apsorpcije, a važni su prijelazi koji uključuju p orbitale i njihove nepopunjene parove (n = nevezujuće). UV-VIS spektroskopija istražuje elektronske prijelaze molekule koji ovise o vrsti veza u molekuli. Molekula mora imati naizmjenični niz dvostrukih i jednostrukih veza, nazvanih istegnuti π sustav, jer molekulske orbitale predstavljaju naizmjenične dvostruke i jednostruke veze. Ultraljubičasta-vidljiva spektroskopija (UV = 200-400 nm, VIS = 400-800 nm, slika 1)) odgovara pobuđivanju elektrona između energijskih nivoa koji odgovaraju molekulskim orbitalama sustava.

			PODRUČJE	VALNA DULJINA (nm)
400 nm	ultraljubičasto		DALEKO UV	10-200
		vidljiva svjetlost	BLISKO UV	200-380
500 pm			VIDLJIVO	380-780
1111 000			🔵 BLISKO IR	780-3000
			SREDNJE IR	3000-30 000
800 nm			DALEKO IR	30 000-300 000
	infracrveno		MIKROVALOVI	300 000-10 ⁹

Slika 1. Vidljivi dio spektra u odnosu na infracrveno i ultraljubičasto zračenje:

Različite molekule apsorbiraju zračenje različitih valnih duljina. Apsorpcijski spektar pokazuje broj apsorpcijskih vrpci odgovornih za strukturne skupine u molekuli (npr. apsorpcija dobivena u UV području za karbonilnu skupinu u acetonu jednaka je valnoj duljini za apsorpciju za karbonilnu skupinu u dietilketonu). Jedinica u molekuli koja je odgovorna za apsorpciju zove se kromofor, najčešće C=C i C=O.

Analiza spektra elektromagnetskog zračenja provodi se spektrofotometrom koji se sastoji od izvora zračenja, monokromatora i detektora (slika 2). UV/Vis spektar nastaje bilježenjem intenziteta zračenja koje je uzorak apsorbirao, propustio ili reflektirao ovisno o valnoj duljini.

Slika 2. Shematski prikaz spektrofotometra

Ultraljubičasto (200-400 nm) i vidljivo (400-800 nm) zračenje pojavljuju se kod kraćih valnih duljina i viših frekvencija electromagnetskog spektra (slika 3).

Slika 3. Valne duljine i frekvencije electromagnetskog spektra

Elektronska energija molekule mijenja se zbog apsorbirane energije u UV području, a rezultat su prijelazi elektrona, tj. pobuđivanje elektrona iz veznih u protuvezne orbitale (slika 4).

Slika 4. Pobuđivanje elektrona iz veznih u protuvezne orbitale

Apsorpcija elektromagnetskog (EM) zračenja pobuđuje elektron u LUMO i stvara pobuđeno stanje. UV-VIS apsorpcija pojavljuje se kao rezultat elektronske apsorpcije, te zatim pobuđivanja u orbitalu više energije (slika 5).

 ΔE predstavlja razliku energija između popunjene orbitale (osnovno stanje) i prazne orbitale (pobuđeno stanje). Ako je mali iznos ΔE , za pobuđivanje elektrona potrebne su niža frekvencija i dulje valne duljine. Kada energija dolazećeg fotona odgovara ΔE , apsorbira se foton i elektron iz popunjenog nivoa prelazi iz svog osnovnog stanja u pobuđeno stanje. Pobuđivanje se događa samo između dva energijski najniža prijelaza valentnih elektrona: $\pi \rightarrow \pi^*$ i $\eta \rightarrow \pi^*$ za područje energije 200-800 nm. Ovi prijelazi događaju se između najviše popunjene molekulske orbitale (HOMO) u najnižu nepopunjenu molekulsku orbitalu (LUMO). Ukupna energija molekule jednaka je sumi njene elektronske, vibracijske i rotacijske energije (elektronska je najveća, a rotacijska najmanja).

Apsorbirana energija ovisi o razlici energija između osnovnog i pobuđenog stanja. Što je razlika u energiji manja, to je valna duljina apsorpcije veća.

$$\Delta \mathsf{E} = \mathsf{h} \, \mathsf{v} = \frac{\mathsf{h} \, \mathsf{c}}{\lambda} = \mathsf{h} \, \widetilde{\mathsf{v}} \, \mathsf{c}$$

v – frekvencija, λ – valna duljina, \widetilde{v} - valni broj

Atomi u molekuli mogu rotirati i vibrirati. Vibracije i rotacije također imaju određene energijske nivoe (slika 6).

Slika 6. Vibracijski i rotacijski energijski nivoi

UV-VIS spektar ima široke pikove zbog toga što su vibracijski i rotacijski nivoi molekulskih orbitala superponirani.

1.1. Elektronski prijelazi

Apsorpcija UV ili vidljivog zračenja odgovorna je za pobuđivanje valentnih elektrona.

Tri su vrste elektronskih prijelaza (slika 7):

- 1. Prijelazi koji uključuju p, s i n elektrone
- 2. Prijelazi koji uključuju elektronski prijenos naboja
- 3. Prijelazi koji uključuju d i f elektrone

Apsorpcija je u organskim molekulama ograničena određenim funkcionalnim skupinama (kromoforima) koje sadrže valentne elektrone niske energije pobuđivanja.

Slika 7. Mogući elektronski prijelazi p, s i n elektrona

$\sigma \rightarrow \sigma * PRIJELAZI$

Elektron u veznoj *s* orbitali pobuđen je u odgovarajuću protuveznu orbitalu, a potrebna energija je velika. Primjerice metan (koji ima samo C-H veze, može imati samo $\sigma \rightarrow \sigma *$ prijelaze) pokazuje apsorpcijski maksimum kod 125 nm, pa se ne vidi u UV-VIS spektru (200 - 700 nm).

$n \rightarrow \sigma^*$ **PRIJELAZI**

Zasićeni spojevi koji sadrže atome sa slobodnim elektronskim parovima (nevezni elektroni) sposobni su za $n \rightarrow \sigma *$ prijelaze, no takvih je organskih spojeva malo. Za ovakve prijelaze obično je potrebno manje energije nego za $\sigma \rightarrow \sigma *$ prijelaze. Oni mogu biti inicirani svjetlom čije su valne duljine u području 150 - 250 nm.

$n \rightarrow \pi * i \pi \rightarrow \pi * PRIJELAZI$

Organski spojevi s najviše prijelaza *n* ili π elektrona u π * pobuđeno stanje. Za takve prijelaze potrebna je nezasićena skupina u molekuli s π elektronima. Molarna ekstinkcija za $n \to \pi$ * prijelaze je relativno niska (10-100 lmol⁻¹cm⁻¹), dok $\pi \to \pi$ * prijelazi (slika 8) imaju molarnu ekstinkciju između 1000 i 10 000 lmol⁻¹cm⁻¹).

Iz Lambert-Beerovog zakona proizlazi da apsorpcija raste s brojem molekula koje apsorbiraju svjetlost određene valne duljine:

A – apsorbancija, ε - molarni apsorpcijski koeficijent (molarna apsorptivnost) ili molarni ekstinkcijski koeficijent ovisan o valnoj duljini, l – duljina puta (cm) (duljina kivete), I₀ – intenzitet upadne svjetlosti, I – intenzitet propuštene svjetlosti.

Apsorbancija je proporcionalna duljini puta l i koncentaciji c.

Tekućine / otopine

Koncentracija analita u otopini može se odrediti mjerenjem apsorbancije (A) kod određenih valnih duljina i primjenom Lambert-Beer-ovog zakona.

Krutine

Kruti spojevi otopljeni u otapalu mogu se analizirati UV-VIS spektroskopijom

n (H(CH=CH) _n H)	λ_{max} / nm	Emax
1	170	15,000
2	217	21,000
3	258	35,000

U tablici je prikazano kako se valna duljina apsorbancije nekih poliena povećava s konjugiranošću sustava:

UV-VIS spektroskopijom je ograničena identifikacija spojeva, ali je tehnika pogodna za kvantitativnu analizu otopina.

Na slici 9 prikazan je UV spektar benzena.

Slika 9. UV spektar benzena

Prikazana je ovisnost apsorbancije uzorka o valnoj duljini u UV području. Široki signali pokazuju karakterističnu UV apsorpciju. "Brijeg" je rezultat specifičnih elektronskih prijelaza koji su prisutni u konjugiranom π sustavu benzena. Osnovni nedostatak UV-VIS spektroskopije su široki signali, pa se teško razlučuju dva pika koja su blizu.

1.2. Utjecaj otapala na UV-Vis spektar

Izabrano otapalo ne bi smielo apsorbirati UV (slika 10) u istom području kao i uzorak.

Slika 10. Područje transparencije za izabrana otapala

Otapalo u kojem je otopljen uzorak obično utječe na spektar. Kako se povećava polarnost otapala, pikovi koji su rezultat $n \rightarrow \pi^*$ prijelaza pomaknuti su prema kraćim valnim duljinama (*plavi pomak*), zbog povećane solvatacije slobodnog elektronskog para, koji snižava energiju *n* orbitale. Često se mogu vidjeti i obrnuti prijelazi za $\pi \rightarrow \pi^*$ prijelaze (*crveni pomak*), zbog privlačnih polarizacijskih sila između otapala i apsorbirajuće specije, koji snižava energiju pobuđenog i nepobuđenog stanja. Taj je efekt veći za pobuđeno stanje, a kako je razlika u energiji između pobuđenog i nepobuđenog stanja smanjena – rezultat je mali *crveni pomak*. Ovaj efekt također utječe na $n \rightarrow \pi^*$ prijelaze, ali je prekriven *plavim pomakom* koji je rezultat solvatacije slobodnog elektronskog para.

Polarna otapala koja tvore jače vodikove veze s polarnim molekulama u osnovnom stanju (slika 11) povećavaju energiju elektronskih prijelaza, tj. pomiču $n \rightarrow \pi^*$ prijelaze prema kraćim valnim duljinama.

Slika 11. Molekulske orbitale u osnovnom stanju

U prijelazima elektrona mogu sudjelovati protuvezne orbitale σ^* i π^* :

nitro -N = 0 azo -N = 0 azo $-N = N - N - N - N - N - N + 0^{-1}$ azo amino $-N = N - NH^{-1}$ azoksi $-N - N + 0^{-1}$ karbonil c = 0 tiokarbonil c = 8

KROMOFOR	SPOJ	POBUĐIVANJE	$\lambda_{max}(nm)$	3	OTAPALO
C=C	eten	$\pi \rightarrow \pi^*$	171	15 000	Heksan
C≡C	heksin	$\pi \rightarrow \pi^*$	180	10 000	Heksan
	etanal	$n \rightarrow \pi^*$	290	15	Heksan
0		$\pi \rightarrow \pi^*$	180	10 000	heksan
N-O	nitrometan	$n \rightarrow \pi^*$	275	17	Etanol
N-O		$\pi \rightarrow \pi^*$	200	5 000	etanol
	orommetan	$n \to \sigma^*$	205	200	Heksan
C-X	jodmetan	$n \to \sigma^*$	255	360	heksan

Supstitucijom ili zbog utjecaja otapala može doći do pomicanja apsorpcijskog maksimuma prema većim valnim duljinama, do tzv. BATOKROMNOG POMAKA, odnosno crvenog pomaka. Pomicanje apsorpcijskog maksimuma prema kraćim valnim duljinama zbog supstitucije ili utjecaja otapala naziva se HIPSOKROMNI POMAK, odnosno plavi pomak. *Auksokromi* su skupine s neveznim elektronima koje vezane za kromofor mijenjaju valnu duljinu i intenzitet apsorpcije. Auksokromi ne moraju apsorbirati u području 200-800 nm, ali utječu na spektar kromofora za koji su vezani. Najvažnije auksokromne skupine su OH, NH₂, Cl, CH₃ i NO₂. Boja molekula može biti pojačana auksokromima.

1.3. Utjecaj povećanja konjugacije na apsorpcijski spektar

Povećanje konjugacije uzrokuje batokromni pomak, odnosno pomicanje maksimuma apsorpcije prema većim valnim duljinama i povećanje maksimuma apsorpcije, tj. hiperkromni pomak.

Slika 12. Utjecaj povećanja konjugacije na apsorpcijski spektar ravnolančanih poliena

Slika 13. Utjecaj povećanja konjugacije na apsorpcijski spektar aromatskih spojeva

Dodatna konjugacija u naftalenu, antracenu i tetracenu uzrokuje batokromni pomak (slika 13). Isti efekt dobije se kada su skupine koje sadrže n elektrone konjugirane s π elektronima.

Aromatski sustavi koji sadrže π elektrone snažno apsorbiraju u UV.

UV spektar derivata tiofena pokazuje snažan apsorpcijski maksimum pri 250 nm (slika 14).

Slika 14. UV spektar metil 4-hidroksi-2-metiltiofen-3-karboksilata

1.4. Vis spektroskopija

Spoj će apsorbirati u vidljivom području ako ima najmanje pet konjugiranih kromofornih i auksokromnih skupina, poput primjerice metilenskog plavila koje apsorbira pri 660 nm (slika 15).

Slika 15. Struktura metilenskog plavila

Na slici 16 prikazani su Vis spektri derivata fenazina i utjecaj supstituenata i povećanja konjugacije na vis spektre.

Slika 16. Vis spektri derivata fenazina

1.5. Primjeri UV-Vis spektara

Primjer 1. UV spektar izoprena

Primjer 3. UV spektar 4a-metil-4,4a,5,6,7,8-heksahidronaftalen-2-ona

Primjer 4. UV spektar 1,2,3,7,8,8a-heksahidronafthalena

Primjer 5. UV spektar (*E*)-3-(4-(dimetilamino)fenil)akrilaldehida

Primjer 10. UV spektar 3-hidroksi-1-metil-2-fenilkinolin-4-ona

Primjer 11. Vis spektar 2-(3-hidroksi-2,4,5,7-tetrjodo-6-okso-6*H*-ksanten-9-il)benzojeve kiseline

2. INFRACRVENA SPEKTROSKOPIJA (IR)¹⁻⁵

Infracrvena spektroskopija (IR) se najviše primjenjuje pri analizi organskih spojeva, ali je korisna i za analizu polimera, poliatomnih anorganskih molekula i organometalnih spojeva. Infracrveno (IR) zračenje emitiraju molekule zbog svojih vibracija. Apsorbiranjem infracrvenog zračenja molekulske vibracije se pobuđuju, pa molekule počinju jače vibrirati. Slobodni atomi ne emitiraju infracrveno zračenje. Svaka molekula ima karakteristične vibracije, koje ovise o čvrstoćama veza i masama dijelova molekula koje vibriraju. Pomoću IR spektroskopije je moguće odrediti od kojih se funkcionalnih skupina molekula sastoji. Kako svaka molekula ima različiti infracrveni spektar, infracrvena spektroskopija se koristi pri identifikaciji tvari. Infracrvena spektroskopija se bavi interakcijom između molekule i zračenjem iz IR područja EM spektra (IR područje = 4000 - 400 cm⁻¹). Valni broj (v) je dan kao 1 / valna duljina u cm.

 $\lambda = c/v$ (c = brzina svjetlosti 3x10¹⁰ cm/s) E = hc / λ = hcv (v = valni broj [cm⁻¹])

Vibrirajuće veze mogu se usporediti s fizikalnim modelom opruge vibrirajućeg sustava. Promatrana veza i vezani atomi mogu se opisati oprugom s dvije vezane mase. Sustav opruge može se opisati Hookovim zakonom:

Jednadžba pokazuje kako se frekvencija ν može mijenjati ovisno o sili opruge k (koja ovisi o krutosti opruge) i masama m₁ i m₂.

IR spektrometrom može se snimiti uzorak u plinskoj fazi (u ćelijama od NaCl-a), kao tekućina (između dvije pločice NaCl-a), te u otopini ili krutom stanju (kao KBr pločica), a Shematski prikaz IR spektrometra

Slika 17. Shematski prikaz IR spektrometra

IR zračenje uzrokuje ekscitaciju vibracija kovalentnih veza u molekuli: *istezanje* (stretching) i *savijanje* (bending) (slika 18). Vibracije istezanja uključuju promjenu duljine veze, dok vibracije savijanja uključuju promjenu kuta veze (bond angle).

Slika 18. Vibracije istezanja i savijanja

2.1. Vibracije kovalentnih veza u molekuli

Vibracije istezanja mogu biti simetrične i nesimetrične (slika 19), dok se vibracije savijanja dijele na: *sjeckanje* (scissoring), *ljuljanje* (rocking), *klanjanje* (wagging), i *uvrtanje* (twisting) (slika 20).

Pri svakoj promjeni oblika molekule dolazi do vibracija, tj. istezanja veza, savijanja veza ili interne rotacija oko pojedinih veza. Asimetrično istezanje/savijanje i interna rotacija mijenjaju dipolni moment molekule, stoga je ono IR aktivno. Simetrično istezanje/savijanje ne mijenja dipolni moment molekule i nije IR aktivno.

2.2. IR spektar i apsorpcijske vrpce

IR spektar najčešće se dobiva mjerenjem apsorpcije IR zračenja, premda se koriste i IR emisija i refleksija. IR spektar nekog spoja daje važne informacije o njegovog kemijskoj prirodi i molekulskoj strukturi, a može se podijeliti u dva područja: *područje funkcionalnih skupina ("fingerprint" region)* (4000-1000 cm⁻¹) i *područje otiska prsta* (< 1000 cm⁻¹) (slika 21). Najviše informacija kod interpretacije IR spektara dobije se iz područja funkcionalnih skupina (polarne kovalentne veze). Neke funkcionalne skupine mogu se vidjeti kao kombinacija različitih vrsta veza. Npr. ester, COOR sadrži C=O i C-O veze. U području otiska prsta asigniranje je otežano zbog kompleksnosti spektra.

veza	cm ⁻¹	intenzitet / položaj	
C=O	1715	s, "finger"	točan položaj ovisi o vrsti karbonila
O-H	3600	s, širok	široko zbog H-veza
N-H	3500	М	primarni ili sekundarni
C-0	1100	S	provjeriti također za OH i C=O
C=C	1650	w alkeni m-s aromatski	alkeni w zbog male polarnosti aromatski obično u paru
C≡C	2150	w, oštar	najočitiji u terminalnim alkinima
С-Н	3000	S	kako se mijenja hibridizacija C - sp ³ -sp ² -sp, frekvencija se povećava
C≡N	2250	m, oštar	karakterističan

Najvažnije apsorpcijske vrpce:

s- jako (strong); m - srednje (medium); W - slabo (weakly)

Tablica IR apsorpcija:

Funkcionalna skupina	<i>Karakteristična apsorpcija</i> (cm ⁻¹)
Alkil C-H istezanja	2950 - 2850 (m ili s)
Alkenil C-H istezanja Alkenil C=C istezanja	3100 - 3010 (m) 1680 - 1620 (w)
Alkinil C-H istezanja Alkinil C <u>=</u> C istezanja	~3300 (s) 2260 - 2100 (w)
Aromatska C-H istezanja Aromatska C-H savijanja Aromatska C=C savijanja	~3030 (w) 860 - 680 (s) 1700 - 1500 (m,m)
Alkohol / Fenol O-H istezanja	3550 - 3200 (broad, s)
Karboksilne kiseline O-H istezanja	3000 - 2500 (broad, v)
Amini N-H istezanja	3500 - 3300 (m)
Nitrili C <u>=</u> N istezanja	2260 - 2220 (m)
Aldehidi C=O istezanja Ketoni C=O istezanja Ester C=O istezanja karboksilne kiseline C=O istezanja Amidi C=O istezanja	1740 - 1690 (s) 1750 - 1680 (s) 1750 - 1735 (s) 1780 - 1710 (s) 1690 - 1630 (s)
Amidi N-H istezanja	3700 - 3500 (m)

Infracrveni spektar karakterističnih funkcionalnih skupina prikazan je na slici 22.

Slika 22. IR spektar karakterističnih funkcionalnih skupina

2.3. Primjeri IR spektara¹⁻⁶

Primjer 1. Infracrveni spektar toluena

Primjer 2. Infracrveni spektar acetona

apsorbancija / %

Karakteristična apsorpcija ketona je oštra vrpca jakog intenziteta od C=O skupine.

Primjer 3. Infracrveni spektar propan-2-ola

Karakteristična apsorpcija alkohola, npr. 2-propanola, je široka vrpca -OH skupine.

Primjer 4. Infracrveni spektar butanske kiseline

Karboksilne kiseline sadrže C=O i OH skupine, C=O vrpca je kod niže frekvencije nego kod ketona.

Primjer 5. Infracrveni spektar metil-etanoata

Infracrveni spektri estera sadrže karakterističnu apsorpcijsku vrpcu za C=O i dvije vrpce za C-O.

Primjer 6. IR spektar anhidrida propanske kiseline

A...C-H istezanja: 2987, 2940, 2880 cm-1 B...asimetrična i simetrična C=O istezania: 1818, 1751 cm-1 C...CH2 (njihanje u ravnini: 1463 cm-1 D...C-CO-O-CO-C istezanje: 1041 cm-1 Primjer 7. IR spektar benzilnog alkohola

G... C-H savijanja izvan ravnine: 810, 752 cm-1

H... C=C savijanja izvan ravnine: 690 cm-1

I... O-H savijanja izvan ravnine, široka vrpca, vodikove veze: 650 cm-1

A... C-H istezanja: =C-H- 3090 cm-1

B... C=C-C=C istezanja simetrična i nesimetrična: 1640, 1598 cm-1

- C... C-H savijanja (zasićeni, alkeni u ravnini)
- D... C-H savijanja izvan ravnine (vinil): 990, 892 cm-1

Primjer 11. IR spektar heks-1-ina

C... C=C istezanja: 1642 cm-1

D... C-H savijanja izvan ravnine: 991 cm-1, alkeni 909.5 cm-1

E... metilenska njihanja u ravnini: 722 cm-1

- A... široko O-H istezanje: 3300-2500 cm-1
- B... C-H istezanje: 2950, 2932, 2855 cm-1, preklapa se s O-H istezanjem
- C... C=0 istezanje: 1711 cm-1
- D... C-O-H savijanje u ravnini: 1413 cm-1
- E... C-O istezanje: 1285 cm-1
- F... O-H savijanje izvan ravnine: 939 cm-1

3. NUKLEARNA MAGNETSKA REZONANCIJA (NMR)¹⁻¹⁰

Nuklearna magnetska rezonancija je nezaobilazna tehnika u identifikaciji i određivanju struktura organskih spojeva, te u izučavanju dinamike i svojstava molekula u tekućem i čvrstom stanju. Ova vrsta spektroskopije uključuje energijske promjene atomskih jezgara, za što je nužno magnetsko polje da bi se te promjene zapazile.

NMR se primjenjuje u medicinskoj dijagnostici (MRI, Magnetic Resonance Imaging), za kliničke pretrage i praćenje mataboličkih procesa (MRS, Magnetic Resonance Spectroscopy), u prehrambenoj tehnologiji i biotehnologiji (za kontrolu masnoća, praćenja zamrzavanja, određivanje autentičnosti vina, čokolade, mlijeka), u poljoprivredi za utvrđivanje vlažnosti i sastava žitarica, praćenje štetnih tvari u tlu, u kemijskoj industriji za određivanje čistoće i sastava produkata reakcija, otapala itd.

Rezonancija je analogna riječi apsorpcija u IR spektroskopiji i označava apsorpciju energije vezane uz promjenu nuklearnih energijskih stanja.

Elementi koji su najčešće prisutni u organskim spojevima su ugljik i vodik. Stoga dvije jezgre koje se najčešće istražuju u NMR-u u organskoj kemiji jesu vodik (¹H) i manje zastupljeni izotop ugljika (¹³C). Da bi jezgra bila magnetski aktivna i mogla proizvesti signal magnetske rezonancije ona mora imati neparan broj protona odnosno neutrona ili neparan broj protona i neutrona (maseni broj). ¹H i ¹³C zadovoljavaju taj uvjet. Druge jezgre kojima se mogu dobiti NMR spektri od koristi za organske kemičare jesu ²H, ¹⁵N, ¹⁷O, ¹⁹F i ³¹P. Najrašireniji izotopi ¹²C i ¹⁶O sadrže paran broj protona i neutrona i stoga ne mogu proizvesti NMR signal. ¹H jezgra ima povoljne magnetne osobine, ako što su veliki magnetni moment (μ), kvantni broj spina jezgre (I=1/2) i visoku prirodnu zastupljenost (99,985 %). ¹³C jezgra ima nedostatke zbog male prirodne zastupljenosti (1,1 %) i malog magnetnog momenta (1/4 momenta ¹H), no oni su prevladani korištenjem pulsnih tehnika pobuđivanja i Fourierove transformacije.

Sve elementarne čestice atoma - elektrone, protone i neutrone karakterizira svojstvo koje se naziva spin (engl. *spin*-vrtnja, kutni moment) (slika 23). Budući da je jezgra građena od protona i neutrona, a protoni su pozitivno nabijeni, vrtnja naboja inducira magnetsko polje, tj. magnetski moment jezgre (μ) i moguć je efekt nuklearne magnetske rezonancije. Magnetski moment jezgre definiran je spinskim kvantnim brojem I (I = 0, ½, 1...itd). Spin je karakteriziran kvantnim brojem ukupnog spina jezgre I. Jezgre koje rotiraju i imaju kvantni broj spina jezgre različit od nule (I \neq 0) ponašaju se kao mali magneti, tj. magnetni dipoli.

Slika 23. Vrtnja (spin) jezgara

Tri su vrste jezgara:

1. Jezgre s I = 0 - nemaju interakciju s primijenjenim magnetskim poljem H, tj. one nisu NMR kromofori. Imaju jednak broj protona i neutrona i nemaju vrtnju oko osi (*spin*). Spin jezgre je svojstvo karakteristično za određeni izotop, a ne element. Primjeri jezgri sa I = 0 su izotopi ugljika i kisika ¹²C i ¹⁶O koje nemaju magnetski moment.

2. Jezgre s I = $\frac{1}{2}$ - imaju magnetsko polje različito od 0 i primjenjuju se u NMR-u, a to su najčešće izotop vodika ¹H i ugljika ¹³C. Druge jezgre koje se primjenjuju u spektroskopiji NMR-a s I = $\frac{1}{2}$ su ¹⁹F i ³¹P.

3. Jezgre s I > $\frac{1}{2}$ - imaju oba magnetska momenta. Ova skupina uključuje i izotope poput ²H i ¹⁴N.

Α	Z	Ι		
Paran	paran	0		
Paran	neparan	1, 2, 3		
Nenaran	neparan ili	polucijeli broj n x ½,		
	paran	n= 1, 2, 3		

Posljedica nuklearnog *spina* je jednoliko magnetsko polje, a jezgre *spina* I mogu imati 2I + 1 orijentaciju. Za jezgre s I = $\frac{1}{2}$ samo su dvije dozvoljene orijentacije jednakih energija (2 x $\frac{1}{2}$ + 1 = 2). Apsorpcijom kvanta elektromagnetske energije (ΔE) specifične frekvencije (ν) može se inducirati obrtanje spina jezgara (*spin-flip*), što ovisi i o jačini primijenjenog polja (H₀).

U magnetskom polju Zemlje ($B_0 = 0$), koje je vrlo slabo, jezgre su orijentirane u svim mogućim smjerovima (slika 24). Njihovi energijski nivoi su degenerirani (jednake energije). Kada takve jezgre podvrgnemo djelovanju nekog vanjskog magnetskog polja ($B_0 \neq 0$) degeneracija se gubi. Takve jezgre imaju samo dvije dopustive orijentacije - u smjeru ili nasuprot primijenjenog magnetskog polja. Jezgre čije su magnetske osi u smjeru s vanjskim poljem imaju nešto nižu energiju od jezgara čije su osi nasuprot primijenjenog magnetskog polja. To znači da se protoni, kada ih smjestimo u polje magneta, svrstavaju u dvije skupine koje se razlikuju u orijentaciji spina i energiji.

Slika 24. Orijentacije spinova protona

Mali je suvišak jezgri na nižoj energijskoj razini. Razlika u energijama dvije orijentacije (ΔE) proporcionalna je jačini primijenjenog magnetskog polja B₀. Kada je energijska razlika između jezgara u višem i nižem nivou jednaka energiji radiofrekventnog zračenja dolazi do rezonancije, tj. pojedine jezgre na nižoj energijskoj razini apsorbiraju energiju i "okreću svoje spinove" (*"flip of spins"*), te prelaze u viši energijski nivo (slika 25). Kad se jezgre podvrgnu dodatnom vanjskom magnetnom polju B₀ (1-14 T), jezgre se usmjeravaju ovisno o vrijednosti kvantnog broja I, degeneracija se gubi, magnetni momenti jezgri počinju rotirati u smjeru polja (α - niže energije), odnosno suprotno (β - više energije), tzv. precesija (na Larmorovoj frekvenciji).

Slika 25. Prelazak jezgri u viši energijski nivo nakon apsorpcije energije

Proces apsorpcije energije od strane jezgara naziva se magnetna rezonancija. Kao i u drugim spektroskopijama prijelaz između različitih energijskih razina moguć je apsorpcijom elektromagnetskog zračenja (radiovalnog) ako je ispunjen tzv. Bohrov uvjet:

$\Delta E = h v_0$

h = Planckova konstanta ($6.626069 \cdot 10^{-34}$ Js).

signali detektirani NMR-om

Pod djelovanjem vanjskog magnetskog polja, elektroni iz C-H veze induciraju lokalno magnetsko polje usmjereno nasuprot vanjskom magnetskom polju.

$$v = \frac{\gamma B_0}{2\pi}$$

$$B_0 - jakost magnetskog polja$$

$$v - frekvencija radiovalnog zračenja$$

$$\gamma - žiromagnetna konstanta$$

Dakle, da bi došlo do rezonancije u NMR eksperimentu moguće je mijenjati jakost magnetskog polja ili frekvenciju radiovalnog zračenja. Apsorpcija energije ovisi o frekvenciji i jakosti magnetskog polja. Stariji NMR spektrometri rade uz konstantnu frekvenciju radiovalnog zračenja i promjenjivo magnetsko polje, a današnje generacije NMR spektrometara rade s poljima konstantne jakosti, dok se frekvencija radiovalnog izvora mijenja tzv. tehnikom pulsne Fourievove transformacije (PFT).

Pretpostavke za NMR:

1. spinski naboj generira magnetsko polje, magnetski moment (μ) je proporcionalan spinu.

2. u prisustvu vanjskog magnetskog polja (B_0), postoje dva spinska stanja, +1/2 i -1/2. Magnetski moment nižeg energijskog stanja +1/2 usmjeri se uz vanjsko polje, a spinsko stanje više energije -1/2 je suprotnog smjera od vanjskog magnetskog polja.

3. razlika u energiji dva spinska stanja ovisi o jakosti vanjskog magnetskog polja i uvijek je mala. Dijagram prikazuje da dva spinska stanja imaju istu energiju kada nema vanjskog magnetskog polja, ali se grana kada se polje pojača.

4. za spin jezgre 1/2 energijska razlika između dva spinska stanja kod određene jakosti magnetskog polja proporcionalna je njihovom magnetskom momentu.

NMR spektroskopija ima praktičnu vrijednost samo ako dvije različite jezgre (¹H ili ¹³C) u molekuli apsorbiraju energiju kod različitih uvjeta, te da se na taj način mogu međusobno razlikovati. Ukoliko bi izvor magnetskog polja bio jedino spektrometar, tada bi sve jezgre u uzorku osjećale u svakom momentu podjednako magnetsko polje. U tom bi slučaju sve jezgre izotopa, npr. vodika (¹H) apsorbirale u isto vrijeme. Međutim, elektroni u molekuli su nabijene čestice u gibanju koje također stvaraju magnetsko polje, koje je nasuprot magnetskog polja spektrometra. Prema tome, proton u molekuli osjeća slabije magnetsko polje nego što bi ga osjećao "goli" proton u istim uvjetima - elektroni zasjenjuju (eng. *shield*) proton od primijenjenog magnetskog polja. Različiti protoni u molekuli su različito zasjenjeni, jer je njihova elektronska okolina različita. Da bi došlo do apsorpcije energije svi protoni moraju osjetiti jednako magnetskog polja jezgre da bi se prevladalo zasjenjenje. Dakle, različiti kemijski pomaci posljedica su različito zasjenjenja različitih protona.

Jezgra je zasjenjena magnetskim poljem koje nastaje vrtnjom elektrona:

Promjene u raspodjeli elektrona oko jezgre utječu na lokalno magnetsko polje koje osjeća jezgra, frekvenciju kod koje jezgra dolazi u rezonanciju i kemijsku okolinu atoma u molekuli.

Snimanje NMR spektara provodi se NMR spektrometrima (slika 26) koji se označavaju po frekvencijama snimanja izotopa ¹H: 200-900 MHz. Rezonancijska frekvencija od 100 MHz odgovara energiji od približno 4x10-5 kJmol⁻¹. Za eksperiment NMR-a nužna je primjena magnetskog polja. Magneti u NMR-u mogu biti permanentni, elektromagneti, ili kao u mnogim modernim instrumentima bazirani su na supravodljivim selenoidima, hlađenim tekućim helijem.

Slika 26. Shematski prikaz NMR spektrometra

Magneti u spektroskopiji NMR-a trebaju proizvesti magnetsko polje koje mora biti jako (osjetljivost NMR eksperimenta raste s jačinom magneta koji omogućuje dobro razlučivanje signala u spektru), izrazito homogeno (da na svaki dio uzorka djeluje isto magnetsko polje, nehomogenost magnetskog polja uzrokuje širenje signala u spektru) i stabilno. Svaki apsorpcijski signal u NMR eksperimentu nastaje apsorpcijom energije koja je jednaka razlici energija najvišeg (β) i najnižeg (α) energijskog stanja.

3.1. Spektralni parametri NMR-a

Spektralni parametri NMR-a su kemijski pomak (δ), konstanta sprege spin-spin (*J*) i zasjenjenje. Kada se organski spoj koji sadrži jezgre s povoljnim magnetskim osobinama (npr. ¹H ili ¹³C) podvrgne djelovanju magnetskog polja sve jezgre zauzmu jednu od dviju orijentacija koje se razlikuju u energiji. Ako primijenimo zračenje određene energije, pojedine jezgre će apsorbirati energiju i promijeniti orijentaciju. Jezgre s različitom kemijskom okolinom zahtijevaju različite energije za apsorpciju jer su različito zasjenjene magnetskim poljem susjednih elektrona. Energija koja je potrebna da izazove rezonanciju određene skupine atoma mjeri se relativno prema energiji potrebnoj za rezonancijsku apsorpciju standarda, tetrametilsilana (TMS). TMS je standard koji se dodaje u uzorak prije snimanja spektra, a koristi se kao standard jer njegovi protoni, odnosno ugljici daju oštar apsorpcijski signal i kod viših magnetskih polja od većine organskih molekula. Stoga apsorpcija TMS-a ne interferira s apsorpcijama protona ili ugljika u molekuli i koristi se da bi se označio položaj apsorpcije protona ili ugljika u uzorku. Relativni položaj apsorpcije u NMR spektru (u odnosu na unutarnji standard TMS) naziva se kemijski pomak, a intenzitet apsorpcije izravno je proporcionalan broju protona u ¹H NMR spektru.

3.1.1. Kemijski pomak i zasjenjenje

Kemijski pomak jezgre odražava njenu elektronsku okolinu i funkcija je elektronske gustoće oko jezgre. Ovisi o konstanti zasjenjenja koja je karakteristična za kemijsku okolinu svake jezgre. Kemijski pomak je posljedica činjenice da jezgre zapravo nisu podvrgnute magnetskom polju B_0 , koje se primjenjuje u eksperimentu, već nekom individualnom magnetskom polju B_i , koje nastaje kao rezultat superpozicije polja B_0 i lokalnog magnetskog polja (B_{ind}), induciranog gibanjem elektrona oko jezgre suprotnog smjera od B_0 .

Stoga je kemijski pomak osjetljiv na konfiguracijska i konformacijska obilježja molekule. Kemijski pomak se definira pomoću δ vrijednosti i izražava u jedinicama ppm, a dobije se dijeljenjem razlike rezonantnih frekvencija određene jezgre (v) i referentne supstancije (v_{ref}.) s frekvencijom spektrometra:

$$\delta = \frac{v - v_{\text{ref}}}{v_1} \quad 10^{-6}$$

Kemijski pomak je u linearnoj ovisnosti s jakosti primijenjenog magnetskog polja, te se stoga korištenjem jačih magnetskih polja spektri mogu pojednostavniti, budući da se signali

rezonancije međusobno razmiču. Kemijski pomak ne ovisi o primijenjenoj frekvenciji spektrometra. Kao referentni spoj najčešće se koristi TMS koji daje jedan signal i u ¹H i ¹³C spektrima NMR-a na nižim poljima od većine poznatih molekula. Desno od TMS kojem se pripisuje 0 ppm su negativne (-), a lijevo pozitivne (+) vrijednosti kemijskih pomaka.

tetrametilsilan (TMS)

Kemijski pomak je udaljenost signala od referentnog signala (TMS-a), a izražava se u part per million (ppm)

$\delta = \frac{\text{udaljenost niskih polja od TMS (Hz)}}{\text{frekvencija spektrometra (MHz)}}$

Kemijski pomak jezgre je kompleksan parametar koji se sastoji od nekoliko međusobno povezanih doprinosa: dijamagnetni i paramagnetni doprinosi, te anizotropije susjednih atoma (slike 27 i 28).

Dijamagnetni doprinos povezan je sa *s*-elektronima i odgovoran za zasjenjenje jezgre. Signali su pomaknuti prema višim magnetskim poljima, tj. manjim kemijskim pomacima.

Paramagnetni doprinos rezultat je djelovanja π -elektrona i izaziva odsjenjenje jezgre. Signali su pomaknuti prema nižim poljima, tj. većim kemijskim pomacima.

Anizotropni efekti za ¹³C jezgru nisu jako izraženi budući da iznose oko 2 ppm na raspon kemijskih pomaka od 300 ppm (kod ¹H su ti isti efekti na raspon od samo 10 ppm).

Dijamagnetna anizotropija - π elektroni su slabije vezani uz jezgru od s elektrona, tj. slobodniji su za prijelaze uz vanjsko magnetsko polje.

Slika 28. Anizotropni doprinosi kod aromatskih spojeva i alkena

U ¹H NMR spektrima raspon kemijskih pomaka je 1-15 ppm, dok je u ¹³C NMR spektrima 1-250 ppm.

Jezgre mogu biti kemijski i magnetski ekvivalentne. Kemijski ekvivalentne jezgre imaju isti kemijski pomak, dok magnetski ekvivalentne jezgre imaju isti kemijski pomak i jednaku konstantu sprege sa susjednim jezgrama. Primjer kemijski ekvivalentnih protona su Ha i Hb u 1,1,2,2-tetrakloretanu (slika 29a), kemijski ekvivalentnih i magnetski neekvivalentnih protona Ha i Hb u 1,1-dikloretenu (slika 29b), te kemijski i magnetski neekvivalentnih protona Ha i Hb u 1,1-dikloretanu (slika 29c).

Slika 29. Primjeri kemijski i/ili magnetski ekvivalentnih protona

3.1.2. Sprega spin-spin

Sprega spin-spin između istovrsnih jezgara (npr. ${}^{1}\text{H}{}^{1}\text{H}$) je homonokluearna sprega, dok se sprega između raznovrsnih jezgara (npr. ${}^{1}\text{H}{}^{-13}\text{C}$) naziva heteronuklearna sprega. NMR signal promatrane jezgre se zbog sprezanja sa susjednom jezgrom cijepa u multiplet prema pravilu 2nI+1, pri čemu je *n* broj susjednih jezgara, a *I* spinski kvantni broj jezgre. Prema multipletnosti signali mogu biti singlet (s), dublet (d), triplet (t), kvartet (q), kvintet itd. (slika 30).

Slika 30. Vrste signala u NMR spektru

Signali u ¹H NMR spektru cijepaju se prema pravilu 2nI+1 u n + 1 pikova, gdje je n broj ekvivalentnih protona vezanih za susjedni ugljik, a I=1/2. Broj pikova u signalu zove se multiplet signala. Međusobno se cijepaju spegnuti protoni, a cijepanje signala uzrokovano je spin-spin spregom i javlja se kada su različiti protoni jedan blizu drugoga. Multipletnost signala i relativni intenzitet pikova u signalu prikazani su na slici 31.

broj ekvivalentnih protona koji uzrokuju cijepanje	multipletnos signala	st	relativni intenzitet pikova
0	singlet	(s)	1
1	dublet	(d)	1:1
2	triplet	(t)	1:2:1
3	kvartet	(quart)	1:3 <mark>:3:1</mark>
4	kvintet	(quint)	1:4:6 <mark>:4</mark> :1
5	sekstet	(sext)	1 <mark>:5:10</mark> :10:5:1
6	septet	(sep)	1:6: <mark>15</mark> :20:15:6:1

Slika 31. Multipletnost signala i relativni intenzitet pikova u signalu

Konstanta sprege (J / Hz) je udaljenost između dva susjedna pika u pocijepanom NMR signalu, tj. razmak između linija u multipletu (slika 32).

Stvarni kemijski pomak je u središtu simetričnog multipleta, a relativni intenziteti linija u svakom multipletu su u omjeru binominalnih koeficijenata. Magnetski ekvivalentni protoni se međusobno ne cijepaju, dok spregnuti protoni imaju istu konstantu sprege.

Do sprezanja može doći kroz jednu vezu, kroz dvije veze (geminalna sprega), kroz tri veze (vicinalana sprega) i kroz četiri i više veza (sprega dugog dosega) (slika 33).

Slika 33. Vrste sprega spin-spin

Ukoliko je signal protona multiplet zbog sprege spinova moguće je ukloniti cijepanje signala izlaganjem uzorka dodatnom radiofrekventnom zračenju frekvencije koja uzrokuje cijepanje. U alifatskim molekulama geminalna konstanta sprege (dva atoma vezana za isti ugljikov atom) iznosi između 10 i 16 Hz (slika 34). Vicinalne konstante sprege (protoni na susjednim atomima ugljika) iznose 0-16 Hz ovisno o diedarskom kutu ϕ .

Slika 34. Geminalna i vicinalna konstanta sprege

Karplusova jednadžba izražava približnu ovisnost vicinalnih konstanata sprege i kuta: ${}^{3}J_{H-C-C-H} = 10 \cos^{2}\phi \quad 0 < \phi < 90^{0}$

$${}^{3}J_{H-C-C-H} = 15\cos^{2}\phi \quad 90 < \phi < 180^{0}$$

Iz tih jednadžbi proizlazi da ukoliko je diedarski kut φ između dva vicinalna protona 90° tada su konstante sprege male i obrnuto. Karplusova jednadžba se koristi u određivanju stereokemije organskih spojeva.

Konstante sprege u nezasićenim molekulama ovise o prirodi supstituenata, a ne o dvostrukoj vezi. To znači da se stereokemija dvostruke veze može odrediti mjerenjem konstanata sprege vicinalnih protona (slika 35). Konstante vicinalnih protona odražavaju i veličinu prstena.

Slika 35. Konstanta sprege spin-spin u nezasićenim molekulama

Veličinu sprege drugog dosega alilnih protona (${}^{4}J_{AB}$) određuje diedarski kut veze C-H_A i ravnine dvostruke veze (slika 36).

 ${}^{4}J_{AB} = 0 - 3 \text{ Hz}$

Slika 36. Sprega dugog dosega

Približne vrijednosti konstanti sprega: J_{ab} (Hz) J_{ab} (Hz) J *Trans* konstanta sprege je veća od *cis* konstante sprege, npr. trans-3-klorpropanska kiselina ima konstantu sprege 14 Hz, dok cis-steroizomer ima konstantu sprege 9 Hz (slika 37).

Slika 37. Veličina konstante sprege u trans- i cis-steroizomeru 3-klorpropanske kiseline

3.2. Spinski sustavi⁶⁻⁸

Spinski sustav čine svi spinovi koji su u međusobnoj sprezi, a u jednoj molekuli može biti i više spinskih sustava. Postoje spinski sustavi prvog reda (slabo sprezanje) i spinski sustavi drugog reda (jako sprezanje). U spinskim sustavima prvog reda omjer razlike Larmorovih frekvencija dvaju spinova i njihove konstante sprege je veći od 10 ($\Delta v/J > 10$), dok je kod spinskih sustava drugog reda taj omjer manji od 10. Konstante sprege i kemijski pomaci u spinskim sustavima prvog reda mogu se točno odrediti, dok se često za više spinske sustave drugog reda iz spektra ne mogu odrediti pa se za računanje konstante sprege koriste proračuni. Kemijski neekvivalentne jezgre u spinskom sustavu prvog reda označavaju se slovima A, M i X, a kod sprezanja drugog reda A, B i C. Kemijski i magnetski ekvivalentne jezgre označavaju se istim slovima, dok se kemijski ekvivalentne a magnetski neekvivalentne jezgre označavaju A, A', B, B' itd. Ovisno o broju spinova koji se sprežu postoje dvospinski, trospinski, četverospinski, peterospinski sustavi itd. Oni mogu biti prvog ili drugog reda.

Dvospinski sustavi	Trospinski sustavi	Četverospinski sustavi	Peterospinski sustavi
AX (prvog reda)	AX ₂ (prvog reda)	AX ₃ (prvog reda)	A ₂ X ₃ (prvog reda)
AB (drugog reda)	AB ₂ (drugog reda)	AB ₃ (drugog reda)	A ₂ B ₃ (drugog reda)
AM (drugog reda)	AMX (prvog reda)	A ₂ X ₂ (prvog reda)	ABX ₃ (drugog reda)
	ABX (drugog reda)	A ₂ B ₂ (drugog reda)	
	ABC (drugog reda)	AA'XX'	
		AA'BB'	

U dvospinskom sustavu A_2 (slika 38) dva kemijski ekvivalentna protona imaju isti kemijski pomak i ne sprežu se međusobno, pa je njihov signal singlet.

Slika 38. Dvospinski sustav A2

3.2.1. Dvospinski sustavi prvog i drugog reda

U dvospinskom sustavu prvog reda AX (slika 39), A i X su dubleti i iz spektra se može odrediti konstanta sprege J_{AX} . Razlika vrijednosti kemijskih pomaka puno je veća od konstante sprege).

Slika 39. Dvospinski sustav AX

Disupstituirani alkeni sprežu se u AX spinskim sustavima, a veličina konstanta sprege ovisi o tome radi li se o vicinalnom ili geminalnom sprezanju (slika 40).

Slika 40. Primjeri dvospinskih sustava AX

Izgled dvospinskog sustava drugog reda AB (slika 41) podsjeća na kvartet, no intenziteti pikova u signalu nisu 1:3:3:1 (unutarnji su veći, vanjski manji) i konstanta sprege je direktno mjerljiva.

Slika 41. Dvospinski sustav AB

Primjer za AB spinske sustave su 1,2,3,4- i 1,2,3,5-tetrasupstituirani benzen, polisupstituirani furani, piridini i drugi aromatski sustavi (slika 42).

Slika 42. Primjeri dvospinskih sustava AB

3.2.2. Trospinski sustavi prvog i drugog reda

U trospinskom sustavu prvog reda AX₂ (slika 43), proton A se spreže s protonima X po pravilu n+1 u triplet, a signal za X je dublet i računa se konstanta sprege J_{AX} .

Slika 43. Trospinski sustav AX₂

U trospinskom sustavu drugog reda AB₂ (slika 44) nije moguće konstantu sprege odrediti iz spektra već proračunima.

Slika 44. Trospinski sustav AB₂

U AB₂ spinskom sustavu sprežu se vicinalni i geminalni protoni u molekulama suspstituiranih alkana, te protoni 1,2,3-trisupstituiranih benzena (slika 45).

U trospinskom sustavu prvog reda AMX (slika 46) A, M i X su dubleti dubleta, a konstanta sprege J_{AM} , J_{AX} , J_{MX} se određuje iz spektra.

Slika 46. Trospinski sustav AMX

U trospinskom sustavu drugog reda ABX (slika 47) J_{AB} se određuje iz spektra, dok se J_{AX} , J_{BX} , v_A i v_B mogu odrediti samo proračunima.

Slika 47. Trospinski sustav ABX

Spektar spinskog sustava ABC (slika 48) se može riješiti jedino primjenom kompjuterskih simulacijskih metoda.

Slika 48. Trospinski sustav ABC

Spinski sustav ABX karakterističan je za sustave alkilnog i vinilnog tipa, te za trisupstituirane aromatske sustave (slika 49).

Slika 50. Primjer trospinskog sustava ABX vinilnog tipa

3.2.3. Četverospinski sustavi prvog i drugog reda

Iz spektra četverospinskog sustava prvog reda AX_3 (slika 51a) konstanta sprege J_{AX} se može odrediti iz spektra, dok se spektar drugog reda AB_3 (slika 51b) rješava kompjuterskim metodama. Primjer spinskog sustava AX_3 je 2-brompropanal, dok je primjer AB_3 spinskog sustava 1-brom-1-kloretan.

U spektru četverospinskog sustava prvog reda A_2X_2 (slika 52a) prisutni signali su triplet i konstanta sprege se može odrediti iz spektra, dok se spektar drugog reda A_2B_2 (slika 52b) rješava proračunima.

Slika 52. Četverospinski sustav A₂X₂ i A₂B₂

Primjer spinskog sustava A_2X_2 je 1-brom-2-metoksipropan, dok su primjeri spinskog sustava A_2B_2 prikazani na slici 53.

Slika 53. Primjeri spinskog sustava A₂B₂

U spektru četverospinskih sustava drugog reda AA'XX' prisutni su centralnosimetrični multipleti AA' i XX' (slika 54a) i konstante sprega $J_{AA'}$, $J_{XX'}$, J_{AX} , $J_{AX'}$ su jednake, dok se spektri spinskih sustava AA'BB'(slika 54b) rješavaju kompjuterskim metodama i karakteriziraju ga 4 neovisne konstante sprege.

Slika 54. Četverospinski sustav AA'XX' i AA'BB'

Primjer AA'XX' su molekule koje sadrže X-CH₂CH₂-Y skupine gdje X i Y imaju slične utjecaje na kemijski pomak. Spinski sustav AA'BB' prisutan je u primjerice *orto*-diklorbenzenu.

Slika 55. Primjer spinskog sustava AA'BB'

3.2.4. Peterospinski sustavi prvog i drugog reda

Iz spektra peterospinskog sustava prvog reda A₂X₃ (slika 56a) koji se sastoji od tripleta i kvarteta može se odrediti konstanta sprege, dok se spinski sustavi drugog reda A₂B₃ (slika 56b) i ABX₃ (slika 57) rješavaju kompjuterskim metodama.

Slika 56. Peterospinski sustavi A₂X₃ i A₂B₃

Slika 57. Peterospinski sustav ABX₃

Primjer spinskog sustava A_2X_3 su etilne skupine CH_3CH_2 -X, gdje je X elektronegativni atom; spinskog sustava A_2B_3 su etilne skupine CH_3CH_2 -X, gdje je X metal (npr. CH_3CH_2 -SiR₃); spinskog sustava ABX₃ su etilne skupine u kiralnim molekulama kada su CH₂ protoni dijastereotopni.

3.3. Nuklearni Overhauserov efekt (NOE)

Nuklearni Overhauserov efekt (NOE) je efekt značajan u NMR spektroskopji jer pomoću njega možemo dobiti bolji uvid u strukturu molekule. NOE se koristi za određivanje položaja skupina koje su međusobno blizu u prostoru, tj. za određivanje trodimenzijske strukture organskih spojeva (slika 58).

Slika 58. NOE efekti skupina koje su međusobno blizu u prostoru

4. JEDNODIMENZIJSKE TEHNIKE NMR¹⁻¹⁰

U jednodimenzijskoj spektroskopiji NMR prisutni signali su funkcija jednog parametra, obično kemijskog pomaka. Spektri jednodimenzijskih tehnika nuklearne magnetske rezonancije ¹H i ¹³C prikazuju signale kemijski neekvivalentnih protona, odnosno ugljika u spoju. Skala za kemijski pomak izražena je jedinicama ppm i ovisi o prirodi jezgre. tehnika APT i tehnika DEPT. U ¹H NMR spektrima raspon kemijskih pomaka je 1-15 ppm, dok je u ¹³C NMR spektrima 1-250 ppm. U jednodimenzijske tehnike NMR spadaju ¹H i ¹³C NMR,

4.1. ¹H NMR spektroskopija

Iz ¹H NMR spektra na temelju kemijskih pomaka, spin-spin sprezanja i intenziteta signala dobiva se prva informacija o strukturi molekule. Zasjenjenje jezgre elektronima utječe na kemijski pomak. Protoni koji imaju veći kemijski pomak su pri većim frekvencijama i na nižem magnetskom polju, odnosno odsjenjeni, dok su protoni koji imaju manji kemijski pomak na nižim frekvencijama,odnosno zasjenjeni (slika).

protoni u okolini siromašnoj elektronima	protoni u okolini bogatoj elektronima
odsjenjeni protoni	zasjenjeni protoni
niža polja	viša polja
visoke frekvencije	niske frekvencije
veliki kemijski pomak δ	mali kemijski pomak δ
	δ
	- frekvencija

NMR spektar je grafički prikaz apsorpcije radiofrekventnog zračenja (y-os) u odnosu na frekvenciju radiofrekventnog zračenja. Frekvencija i jačina magnetskog polja su međusobno povezane Larmor-ovom jednadžbom. Integral u spektru predstavlja područje apsorpcije pika. ¹H NMR spektar (slika 59) sadrži:

- 1. broj signala
- 2. intenzitet signala (područje ispod pika)
- 3. cijepanje signala (multipliciteti)

Slika 59. Primjer ¹H NMR spektra

Broj signala u ¹H NMR spektru

Kemijski neekvivalentni protoni nalaze se u različitoj molekulskoj okolini i imaju različiti kemijski pomak, dok kemijski ekvivalentni protoni imaju istu kemijsku okolinu i isti kemijski pomak.

Kemijski ekvivalentni protoni

Zamjenom protona na C-1 i C-3 nastaje isti spoj (1-klorpropan). Protoni na C-1 i C-3 su kemijski ekvivalentni i imaju isti kemijski pomak (slika 60).

Slika 60. Primjer kemijski ekvivalentnih protona

Na slici 61 prikazane su različiti primjeri organskih spojeva i njihov broj signala u ¹H NMR spektru.

Slika 61. Primjeri organskih spojeva i njihov broj signala u ¹H NMR spektru

U sljedećim tablicama prikazani su karakteristični kemijski pomaci u ¹H NMR spektrima za neke klase spojeva.

Zbog prisutnosti elektron-odvlačećih atoma u molekuli NMR signali protona nalaze se kod nižih frekvencija, odnosno na većem kemijskom pomaku δ (slika 62).

Slika 62. Utjecaj prisutnosti elektronegativnih elemenata na kemijski pomak

Linija integriranja

Područje ispod svakog signala u ¹H NMR spektrima proporcionalno je broju protona. Primjerice u ¹H NMR spektru 1-brom-2,2-dimetilpropana (slike 63 i 64) intenzitet signala za metilne protone na 1 ppm je 9 i odgovara kemijski ekvivalentnim protonima triju metilnih skupina, dok inntenzitet signala metilenskih protona iznosi 2 i odnosi se na dva kemijski ekvivalentna protona. Relativni odnos pikova u spektrima je 9:2, odnosno 7:1,6.

Slika 64. ¹H NMR spektar 1-brom-2,2-dimetilpropana

U ¹H NMR spektru etilbenzena signali za protone Hc, Hd i He se preklapaju na 7,2 ppm i intenzitet signala iznosi 5 (5 protona u benzenskom prstenu), dok je intenzitet signala metilenskih protona 2, a metilnih 3 (slika 66).

Slika 66. ¹H NMR spektar etilbenzena

U ¹H NMR spektru nitrobenzena (slika 67) signali za protone Ha, Hb i Hc se ne preklapaju, a intenziteti signala odnose se 2(c):1(b):2(a).

Slika 67. ¹H NMR spektar nitrobenzena

Cijepanje u dublet dubleta

Kada se skupina magnetski ekvivalentnih protona s više skupina protona cijepa njegov je signal *multiplet-multipleta*. Npr. ukoliko se proton spreže s dva različita protona cijepat će se sprezanjem s jednim od ta dva protona u *dublet* i zatim će se svaka komponenta *dubleta* s drugim protonom cijepati u simetrični *multiplet* od 4 linije (*dublet-dubleta*).

Zbog sprezanja između vicinalnih protona, signal se cijepa u dublet dubleta, različiti su kemijski pomaci za svaki proton, a jednake konstante sprege.

Razlika između kvarteta i dubleta dubleta je u relativnom odnosu pikova u signalu (slika 68).

Slika 68. Relativni odnosi pikova u kvartetu i dubletu dubleta

Na primjeru 1,1,2-triklor-3-metilbutana prikazan je dijagram cijepanja za dublet dubleta (slika 69).

Slika 69. Dijagram cijepanja za dublet dubleta

Na primjeru 1-brompropana prikazan je dijagram cijepanja za kvartet tripleta (slika 70).

Slika 70. Dijagram cijepanja za kvartet tripleta

¹H NMR spektri alkohola i amina

Funkcionalne skupine poput –OH, -COOH, $-NH_2$ i –SH sadrže protone koji se lako izmjenjuju u otopini, te pokazuju proširene signale (broad signal) u ¹H NMR spektru.

 $R-OH_1 + R'-OH_2 \longrightarrow R-OH_2 + R'-OH_1$ Labilni protoni se mogu izmjeniti dodatkom deuterirane vode u NMR uzorak s deuterijem, . Budući da se deuterij ne vidi u spektru, ¹H NMR-signali labilnih protona nestaju.

 $R-OH + D_2O$ \longrightarrow R-OD + H-OD

U amidima dolazi do proširenja signala amidnih protona zbog ograničene vrtnje oko C-N veze, a ograničena rotacija oko veze C-N je posljedica djelomice dvostrukog karaktera te veze. $R = \frac{H_b}{C - N}$

 $O' H_a$ Kemijski pomak za protone OH skupine se mijenja (0.5-5 ppm) i ovisi o temperaturi i koncentraciji. Signal OH protona često je širok (broad peak) i nema cijepanja. Dodatak D₂O prevodi OH u OD, pa OH signal nestaje

Protoni vezani za kisik i dušik imaju veći kemijski pomak zbog jače vodikove veze. mehanizam za kiselo kataliziranu izmjenu protona

ovi se protoni mogu zamijeniti s deuterijem

4.1.1. Interpretacija ¹H NMR spektra

Pri interpretaciji ¹H NMR spektra poznate ili nepoznate molekule potrebno je odrediti broj signala, veličinu kemijskih pomaka i multipletnost, sagledati okolinu pikova, odrediti spin-spin sprege. Pri analizi ¹H NMR spektra nepoznate molekule, ako je poznata molekulska formula izračunati stupanj nezasićenosti (prsten, dvostruka veza, trostruka veza) [$n = \frac{1}{2} (2C + 2 - H)$]. Bilo koji prošireni signal (broad signal) u spektru je proton –OH ili – NH, ako je broad signal iza 10 ppm najvjerojatnije je riječ o protonu OH kiseline. Ako je prisutan signal na oko 3-4 ppm radi se o protonu na ugljiku za koji je vezan i elektronegativni element (O ili halogen). Ako su signali prisutni na oko 7-8 ppm riječ je o aromatskim protonima. Signali na oko 5-6 ppm upućuju na vinilne protone, a iz konstante sprege potrebno je izračunati radi li se o *cis* ili *trans* stereoizomeru. Ako ju u spektru prisutan signal (singlet) na oko 2,1-2,5 ppm vjerojatno je riječ o protonima uz karbonilnu skupinu (CH₃-CO) ili uz aromatski prsten (Ph-CH₃). Signal na oko 9-10 ppm upućuje na aldehid (CO-H), dok slab singlet oko 2,5 ppm upućuje na terminalni alkin (CCH).

4.1.2. Primjeri ¹H NMR spektara^{1-5, 11-15}

Primjer 1. ¹H NMR spektar etoksiklormetana

Primjer 6. ¹H NMR spektar etil-acetata (etil-etanoat)

Primjer 7.¹H NMR spektar toluena (metilbenzen)

Primjer 9. ¹H NMR spektar metil-vinil-etera (metil-eteril-eter)

Primjer 10. ¹H NMR spektar 1,2-dimetoksietana

Primjer 11. ¹H NMR spektar 4-izopropil-1-metoksibenzena

Primjer 12. ¹H NMR spektar 3-brommetilentoluena (3-brommetil-1-metilbenzen)

Primjer 13. ¹H NMR spektar dietiletera

Primjer 14. ¹H NMR spektar 1,1-dikloretana

Primjer 15. ¹H NMR spektar 1,3-dibrompropana

Primjer 17.¹H NMR spektar izopropil-metil-etera

Primjer 18. ¹H NMR spektar deuteriranog 3-brompropanola

.

Primjer 19. ¹H NMR spektar nitropropana

Primjer 20.¹H NMR spektar etil-kloracetata

Primjer 21. ¹H NMR spektar 1,1,2-tribrometana

Primjer 22. ¹H NMR spektar etilbenzena

Primjer 25. ¹H NMR spektar i dijagram cijepanja stirena

Primjer 26. ¹H NMR spektar i dijagram cijepanja jodpropana

Primjer 27. ¹H NMR spektar cinamaldehida

Primjer 30.¹H NMR spektar metil-bromida

Primjer 38. ¹H NMR spektar 2-feniletil-propanoata

Primjer 39. ¹H NMR spektar 3-brompropena (alil-bromid)

4.2. ¹³C NMR spektroskopija¹⁻¹⁰

U ¹³C NMR spektru broj signala predstavlja broj različitih vrsta ugljikovih atoma u spoju. ¹³C jezgra je oko 400 puta slabije osjetljiva od ¹H jezgre, a intenzitet ¹³C signala je oko 6400 puta manji od intenziteta ¹H signala. Zbog male zastupljenosti u prirodi (1,1 %) ne vide se sprezanja ¹³C-¹³C. Kemijski pomak je u rasponu 1 - 220 ppm, a referentni spoj je TMS. Isti faktori kao i kod ¹H-NMR utječu na kemijski pomak. Zbog dugog vremena relaksacije (iz pobuđenog u osnovno stanje) nema integracijske linije (ne može se dobiti kvantitativan spektar).

Tehnikom potpunog rasprezanja spinova (*COM*-complete decoupling) dobiva se potpuno raspregnuti ¹³C NMR spektar u kojem je za svaki kemijski neekvivalentan ugljikov atom prisutan po jedan signal.

Tehnikom djelomičnog rasprezanja spinova (*OFR* – proton off resonance decoupling) dobiva se djelomično raspregnuti ¹³C spektar u kojem je signal za svaki ugljik spegnut kroz jednu vezu C-H, pri čemu se signali cijepaju po pravilu n+1, gdje je n broj direktno vezanih protona za promatrani ugljik. Primjerice za metilni ugljik (-CH₃) u spektru je prisutan signal za ugljikov atom kao kvartet, dok se metilenski ugljik (-CH₂) cijepa u triplet.

Karakteristični kemijski pomaci u ¹³C NMR spektru za ugljike u nekim funkcionalnim skupinama prikazani su u sljedećim tablicama.

O=C-X karboksilne kiseline i njihovi derivati (esteri, amidi)

vrsta ugljika	kemijski pomak (ppm)	vrsta ugljika	kemijski pomak (ppm)
(CH ₃) ₄ Si	0	C—I	0–40
R—CH ₃	8–35	C-Br	25-65
R— <mark>C</mark> H ₂ —R	15 - 50	C—CI C—N C—O	35–80 40–60 50–80
R— <mark>C</mark> H—R	20-60		<mark>165–175</mark>
R— <mark>C</mark> —R R	30–40	RO RO	165–175
=C	65-85	R HO	175–185
=C	100-150	R H C=O	190–200
C	110-170	R R	205–220

U djelomično raspregnutom ¹³C NMR spektru butan-2-ona (slika 71) prisutna su 4 signala: kvartet za metilni ugljik (CH₃) na 8 ppm, kvartet za metilni ugljik (CH₃) na 30 ppm, triplet za metilenski ugljik (CH₂) na 38 ppm i singlet za karbonilni ugljik (C=O) na 210 ppm. U potpuno raspregnutom ¹³C NMR spektru butan-2-ona prisutna su 4 singleta.

Slika 71. Djelomično raspregnuti i potpuno raspregnuti ¹³C NMR spektar butan-2-ona

Primjer 1. ¹³C NMR spektar etil-etanoata

Primjer 3. ¹³C NMR spektar cikloheksana u CDCl₃

Primjer 6. ¹³C NMR spektar etilbenzena

Primjer 15. Djelomično raspregnut ¹³C NMR spektar 2-butanola

Primjer 17. ¹³C NMR spektar etil-cijanoacetata

Primjer 18. ¹³C NMR spektar 2-butanon-4-ena

Primjer 19. ¹³C NMR spektar cikloheks-2-enona

4.2.2. Tehnika APT^{1-3,6-8}

Jednodimenzijskom NMR tehnikom APT (engl. attached proton test) moguće je razlikovati ugljikove atome prema multiplicitetu i broju protona direkno vezanih za pojedini ugljik. U APT spektru signali za ugljikove atome nalaze se s "gornje" ili "donje" strane spektra. Na istoj strani spektra su signali ugljika za koje je direktno vezan neparan broj vodika (CH, CH₃), dok su sa suprotne strane signali ugljika za koje je direktno vezan paran broj vodika (CH₂) i signali kvaternih ugljikovih atoma (C bez vodika i C=O). U APT spektru 4-hidroksi-3-metilbutan-2-ona (slika 72) prisutni su svi signali za "neparne" ugljikove atome

s "gornje" strane spektra, dok se na "donjoj" strani spektra nalaze "parni" (CH₂) i kvaterni ugljici (C=O).

Slika 72. Usporedni ¹³C NMR i APT spektri 4-hidroksi-3-metilbutan-2-ona

4.2.3. Tehnika DEPT^{1-3,6-8}

Jednodimenzijskom NMR tehnikom DEPT (engl. distortionless enhancement by polarisation transfer) dobivaju se podspektri DEPT-45, DEPT-90 i DEPT 135 pomoću kojih se točnije može odrediti multipletnost pojedinih atoma ugljika. U DEPT spektru nisu prisutni signali za kvaterne ugljikove atome i signali otapala. U DEPT-45 spektru prisutni su signali s "iste" strane spektra za metinski, metilenski i metilni ugljik, u DEPT-90 spektru signal samo za metinski ugljik, dok se u DEPT-135 spektru s "iste" strane nalaze signali za ugljike za koje je vezan neparan broj vodika (metinski i metilni), a sa suprotne strane spektra signal za metilenski ugljik koji ima paran broj vezanih vodikovih atoma:

Na slikama 73-75 prikazani su usporedni ¹³C i DEPT spektri 4-hidroksi-3-metilbutan-2-ona, butan-2-ola i 2-propanola.

Slika 74. DEPT-135 i ¹³C NMR spektri butan-2-ola

Ugljikovi atomi s parnim brojem vezanih H imaju pozitivnu fazu (prema gore), a oni s neparnim brojem H imaju negativnu fazu (prema dolje).

Slika 75. DEPT i ¹³C NMR spektar propanola

4.2.4. Primjeri ¹H i ¹³C NMR spektara

Primjer 1. ¹H i ¹³C NMR spektar metil-4-metoksibenzoata

Primjer 2.¹H i ¹³C NMR spektar 1,2-difenietana

Primjer 3.¹H i ¹³C NMR spektar 1-brom-2-jodbenzena

4.2.5. Primjeri APT i DEPT spektara¹¹⁻¹⁵

Primjer 1. APT ¹³C NMR spektar 2-klorbutana

Primjer 2. APT ¹³C NMR spektar propil-benzoata

Primjer 3. APT i ¹³C NMR spektar 1,2-dimetoksibenzena

5. DVODIMENZIJSKA (2D) NMR SPEKTROSKOPIJA^{1-3,6-8}

Dvodimenzijskom NMR spektroskopijom dobivaju se spektri opisani s dvije dimenzije (evolucijskom F_1 i detekcijskom F_2). Dvodimenzijski spektri mogu se prikazivati trodimenzijski ("stog" prikaz, slika 76a) ili češće konturnim prikazom (slika 76b) gdie signali predstavljaju "cross" pikove.

Slika 76. Trodimenzijski (a) i konturni prikaz (b) dvodimenzijskog NMR spektra

U dvodimenzijske NMR tehnike koje se temelje na skalarnom sprezanju jezgara (kroz kovalentne veze) spadaju tehnike COSY, DQF-COSY, TOCSY, INADEQUATE, HETCOR, HMQC, HSQC i HMBC, dok su NOESY i ROESY tehnike koje se temelje na dipolnom sprezanju (kroz prostor). Sprezanja između istovrsnih jezgara nazivaju se homonuklearnim sprezanjima, a među raznovrsnim jezgrama su heteronuklearna sprezanja.

SKALARNA SPREZANJA (KROZ KOVALENTNE VEZE)

HOMONUKLEARNA (među istovrsnim jezgrama)

- COSY ¹H-¹H - DQF-COSY ¹H-¹H
- ECOSY ¹H-¹H
- TOCSY ¹H-¹H
- INADEQUATE ${}^{13}C {}^{13}C$
- INADEQUATE "C-"
- HETERONUKLEARNA (među raznovrsnim jezgrama)

- HSQC ("proton detected")¹H - ¹³C

- HMQC ("proton detected")¹H - ¹³C

- HMBC ("proton detected") ¹H - ¹³C

- HETCOR ("carbon detected") ¹H - ¹³C - Long-range HETCOR (COLOC) ¹H - ¹³C

- ¹H - ¹H NOESY

DIPOLNA SPREZANJA

(KROZ PROSTOR)

- ¹³C - ¹³C NOESY - ¹³C - ¹³C ROESY

5.1. Tehnike temeljene na skalarnom sprezanju

5.1.1. Tehnika COSY

Tehnika COSY (eng. correlation spectroscopy) je homonuklearna skalarna 2D NMR tehnika kojom se dobivaju informacije o sprezanju protona kroz kovalentne veze (dvije do tri). Cosy spektri pokazuju jezgre u molekuli koje su u međusobnoj sprezi, a najčešće se prikazuju konturno (slika 77) gdje su na dvije osi F_1 i F_2 prikazani ¹H NMR spektri. Pikovi na dijagramu izvan dijagonalne osi pokazuju protone koji su u međusobnoj sprezi.

Slika 77. Konturni prikaz COSY spektra

2D spektar uzduž F_1 i F_2 osi prikazuje uobičajeni ¹H NMR spektar. COSY spektar sadrži dijagonale i ukrštene signale (cross), a dijagonala predstavlja 1D spektar, dok izvandijagonalni pikovi upućuju na sprezanje između dva protona.

U COSY spektru etanola (slika 78) prisutni su signali izvan dijagonale za protone koji su u međusobnoj sprezi: cross pik između tripleta za CH3 na 1,5 ppm i kvarteta na 4 ppm za CH2, te cross pik između kvarteta na 4 ppm i proširenog signala OH na 2,2 ppm. Na F1 i F2 osi se nalaze odgovarajući jednodimenzijski ¹H NMR spektri

5.1.1.1. Primjeri COSY spektara

Primjer 1. COSY spektar etil-metil-ketona

Primjer 5. COSY spektar etilbenzena

Primjer 9. COSY spektar 1-nitropropana

5.1.2. Tehnika DQF-COSY

DQF-COSY (engl. double quantum filter correlation spectroscopy) homonuklearnom tehnikom dobivaju se spektri slični COSY spektrima, ali u njima nisu prisutni signali koji nisu u sprezi (npr. signal za protone metoksi skupine), pa se spektri lakše analiziraju. Na slikama 79 i 80 prikazani su usporedni COSY i DQF-COSY spektri etil-acetata, gdje se može uočiti da u DQF-COSY spektru izostaje signal za metilne protone acetatne skupine, dok je u COSY spektru prisutan ali na dijagonali, odnosno ne spreže se niti s jednim protonom preko kovalentnih veza.

Slika 80. COSY (a) i DQF-COSY (b) spektar etil-acetata

5.1.3. Tehnika TOCSY

TOCSY (engl. total correlation spectroscopy) je skalarna homonuklearna tehnika kojom se zbog bolje osjetljivosti od tehnike COSY dobivaju spektri pomoću kojih se mogu analizirati spinski sustavi i protoni koji imaju bliske kemijske pomake. Ova je tehnika pogodna za analizu makromolekula, poput polisaharida, DNA i proteina. Na slici 81 prikazan je TOCSY spektar dijela polipeptida gdje su crveno označeni signali prisutni i u COSY spektru, dok su zeleno označeni dodatni signali zbog interakcija protona koji nisu direktno vezani preko tri veze.

Slika 81. TOCSY spektar dijela polipeptida

U TOCSY spektru heptan-3-ona (slika 82) prisutni su dodatni signali u usporedbi s COSY

Na slici 83 prikazan je TOCSY spektar saharoze gdje su crveno označena sprezanja između protona 4 sa svim ostalim protonima glukoznog prstena.

Slika 83. TOCSY spektar saharoze

5.1.4. Tehnika INADEQUATE

INADEQUATE (engl. incredible natural abundance double quantum transfer experiment) je homonuklearna tehnika između ¹³C-¹³C koja se temelji na skalarnom sprezanju kroz jednu vezu, odnosno između dva susjedna ugljika. Nedostatak ove tehnike je što je za kvalitetan spektar potrebna veća količina uzorka, budući da je zastupljenost ugljika ¹3C u spoju 1,1 %. Na slikama 84-86 prikazani su INADEQUATE spektri butanola, L-mentola i testosterona.

Slika 85. INADEQUATE spektar L-mentola

5.1.5. Tehnika HETCOR ^{1-3,6-8}

HETCOR (engl. heteronuclear correlation spectroscopy) je heteronuklearna 2D NMR tehnika čiji spektar uzduž osi F_1 prikazuje ¹H NMR spektar, a uzduž F2 osi prikazuje ¹³C NMR spektar. HETCOR spektar sadrži ukrštene signale, tj pokazuje na kojem se ugljiku nalaze koji protoni i temelji se na skalarnom sprezanju kroz jednu kovalentnu vezu vodika i ugljika. U HETCOR spektru etil-2-butenoata (slika 87) prisutni su signali proizašli iz sprezanja ugljika i za njih direktno vezanih vodika: A – H na 4,1 ppm (quart) vezan je za C na 60 ppm (-OCH₂-), B – H na 1,85 ppm (d) vezan je za C na 17 ppm (CH₃- u kiselinskom dijelu estera), C – H na 1,20 ppm (t) vezan je za C na 15 ppm (CH₃- uz -CH₂- u alkoholnom

dijelu estera), D – H na 5,8 ppm (m) vezan za C na 123 ppm (vinil), E – H na 6,8 ppm (m) vezan za C na 145 ppm (vinil uz karbonil), a karbonilni ugljik nema H, pa ni ne pokazuje signal u HETCOR spektru.

5.1.5.1. Primjeri HETCOR spektara

Primjer 1. HETCOR spektar propil-benzoata

Primjer 2. HETCOR spektar 2-metil-3-pentanona

5.1.6. Tehnika HMQC^{1-3,6-8}

HMQC (engl. heteronuclear multiple quantum coherence) je heteronuklearna ¹H-¹³C tehnika koja se te temelji na sprezi kroz jednu kovalentnu vezu između vodika i ugljika. Na slici 88 je prikazan HMQC spektar ipsenola.

5.1.7. Tehnika HSQC^{1-3,6-8}

HSQC (engl. heteronuclear single quantum coherence) je skalarna heteronuklearna ¹H-¹³C tehnika. HSQC spektar za razliku od HMQC spektra ne sadrži signale za spregnute protone na na F1 osi i signali su nešto nižeg intenziteta. Na slici 89 prikazan je HSQC spektar propanola.

Na slici 89 prikazan je HSQC spektar 3-metilbutanola.

Slika 89. HSQC spektar 3-metilbutanola

5.1.8. Tehnika HMBC^{1-3,6-8}

HMBC (engl. heteronuclear multiple bond correlation) je heteronuklearna tehnika koja se temelji na sprezanju vodika i ugljika koji su udaljeni za dvije, tri ili četiri kovalentne veze. HMBC spektar ne sadrži signale koji se odnose na sprezanje direktno povezanih atoma ugljika i vodika, ali sadrži signale za sprezanje primjerice preko tri veze karbonilnog ugljika i vodika koji je vezan za susjedni ugljikov atom. Na slici 90 prikazan je HMBC spektar etil-pentanoata u kojem su prisutni signali za sprezanje ugljika i vodika kroz dvije i tri veze

HMBC spektar 1-brom-2-klorbenzena pokazuje osam izraženih cross-pikova iz sprezanja kroz tri veze (H3 sa C1 i C5, H4 sa C2 i C6, H5 sa C1 i C3, H6 sa C2 i C4) i dva vrlo slaba signala za sprezanje kroz dvije veze (H3 sa C2, H6 sa C1) (slika 91).

Slika 91. HMBC spektar 1-brom-2-klorbenzena

5.2. Tehnike temeljene na dipolnom sprezanju^{1-3,6-8}

Tehnike temeljene na dipolnom sprezanju uključuju NOESY i ROESY tehnike, a podrazumijevaju direktno sprezanje dvaju spinova kroz prostor. Ove su tehnike od izuzetnog značaja u određivanju trodimenzijskih struktura molekula, konformacije, te udaljenosti atoma u prostoru.

5.2.1. Tehnika NOESY

NOESY (engl. nuclear Overhauser enhancement spectroscopy) je homonuklearna tehnika koja se temelji na sprezanju protona kroz prostor. U NOESY spektru prisutni su signali za spregnute protone koji su u prostoru međusobno blizu, odnosno NOE efekt mora biti jak.

Na slikama 92 i 93 prikazani su NOESY spektri *trans-\beta*-metilstirena i *cis-\beta*-metilstirena.

Slika 92. NOESY spektar *trans-\beta*-metilstirena

Slika 93. NOESY spektar cis- β -metilstirena

5.2.2. Tehnika ROESY

ROESY (engl. rotating frame Overhauser effect spectroscopy) je homonuklearna 2D tehnika slična NOESY tehnici i primjenjuje se za određivanje struktura molekula srednjih veličina. Na slici 94 je prikazan ROESY spektar gramicidina.

6. SPEKTROMETRIJA MASA (MS)¹⁻¹⁰

Spektrometrija masa (MS) je tehnika kojom se analiziraju molekule na temelju omjera njihove mase i naboja. Spektrometrija masa se koristi za kvalitativnu i kvantitativnu analizu uzoraka, određivanje strukture molekula promatrajući fragmentaciju molekula, određivanje molarne mase molekule, određivanje fiizikalnih i kemijskih svojstava tvari itd.

Spektrometar masa (slika 95) sastoji se od izvora iona u kojem se uzorak ionizira, analizatora mase iona i detektora iona koji je povezan s računalom. U spektrometru masa molekule se ioniziraju, nastali ioni separiraju djelovanjem vanjskog električnog i/ili magnetskog polja i detektiraju prema omjeru mase m i naboja z (m/z).

Slika 95. Shematski prikaz spektrometra masa

Da bi se molekula mogla analizirati prvo ju treba ionizirati u ionizatoru. Nastali ioni se provode kroz analizator, koji razdvaja ione na osnovu njihovih masa u prostoru i/ili vremenu. Iz analizatora, ioni idu na detektor gdje proizvode električni signal koji se može registrirati (npr. na računalu).

Molekule se najčešće ioniziraju bombardiranjem molekula u plinskoj fazi elektronima što daje nastalim ionima dovoljnu vibracijsku energiju koja dovodi do njihovog cijepanja (fragmentacija) i stvaranja novih iona uz gubitak neutralnih molekula.

 A^+ C^+ + neutralna čestica (nenabijena)

Ako ioni B^+ i C^+ imaju dovoljnu vibracijsku energiju mogu se dalje cijepati:

 $C^+ \longrightarrow D^+ +$ neutralna čestica

Vrsta dobivenih iona, tj. izgled spektra masa ovisi o primijenjenoj tehnici ionizacije uzorka, čiji izbor ovisi o vrsti uzorka.

Metode ionizacije koje uz djelomičnu ili potpunu fragmentaciju uzorka daju stabilne molekulske ili produktne ione su ionizacija elektronima (*Electron Ionization, EI*), kemijska ionizacija (*Chemical Ionization, CI*) i ionizacija brzim atomima (*Fast Atom Bombardment,*

FAB). Kod ionizacije elektronima (slika 96) elektroni se ubrzavaju razlikom potencijala od 70 eV. Ta je energija dovoljna za ionizaciju molekule (7-10 eV) i za cijepanje molekule (jednostruke veze imaju energiju disocijacije veze oko 4 eV), a produkt je radikal kation:

$$M \xrightarrow{-e} M$$

Nedostatak ove tehnike ionizacije je što često zbog potpunog cijepanja u spektru masa izostaje molekulski ion. To se može izbjeći korištenjem blažih ionizacijskih tehnika poput kemijske ionizacije i ionizacije brzim atomima.

Slika 96. Spektrometar masa s ionizacijom elektronima i magnetskim nalizatorom

Pri kemijskoj ionizaciji se uzorak ionizira pomoću plina (metan, izobutan ili amonijak) koji se pušta u ionsku komoru i kod nešto viših tlakova molekule plina se ioniziraju:

$$CH_4 + e^- \longrightarrow CH_4^+ + 2e^-$$

Nastali ioni mogu ući u koliziju s neutralnim česticama, pa je prisutna jedna od glavnih bimolekularnih reakcija u kojoj nastaju kationi:

:

$$CH_4^{\bullet+} + H_3C_{-\xi}^{-+} - H \longrightarrow CH_5^{+} + CH_3$$

Tako stvoreni ion CH_5^+ (protonirani CH_4^+ ion) djeluje kao jaka kiselina i protonira uzorak:

$$M + CH_5^+ \longrightarrow MH^+ + CH_4$$

U spektrima masa dobivenima kemijskom ionizacijom uzorka, dobije se jedinica mase veća od stvarne molekulske mase. U metodi kemijske ionizacije molekule uzorka imaju znatno nižu energiju nego kod ionizacije bombardiranjem elektronima.

Za analizu nestabilnih spojeva i spojeva velike molekulske mase koje se lako fragmentiraju koriste se blage tehnike ionizacije poput ionizacije elektroraspršenjem (*Electrospray Ionisation, ESI*), termoraspršenjem (*termospray, TS*), ionskim raspršenjem (Ion Spray, IS) i matricom potpomognuta ionizacija uz desorpciju laserskim zračenjem (matrix assisted laser desorption ionisation, MALDI).

Iz ionskog izvora ioni nastali jednom od navedenih tehnika ionizacije odlaze u analizator mase gdje se radvajaju na temelju njihove mase i omjera (m/z). Najčešće korišteni analizatori masa su analizator mase s magnetskim sektorom (*magnetic sector mass analyzer*, *B*, slika 97), kvadrupolni analizator mase (*quadropole mass analyzer*, *Q*, slika 98), stupica za ione (*ion trap, IT*, slika 99) i analizator mase vremena leta (time of flight mass analyzer, TOF, slika 100).

Slika 97. Spektrometar masa s analizatorom mase s magnetskim sektorom

Slika 99. Spektrometar masa s analizatorom mase stupicom za ione

Slika 100. Spektrometar masa s analizatorom mase vremena leta

Prikaz spektra masa daje ovisnost intenziteta signala o omjeru mase i naboja (m/z). U spektru masa signal s najvećim brojem m/z zove se signal molekulskog iona i obično odgovara molekulskoj masi analizirane molekule, dok signal najvećeg intenziteta odgovara najstabilnijem ionu i zove se osnovni signal, a intenziteti ostalih signala izraženi su kao postotak osnovnog signala (slika 101).

Slika 101. Prikaz spektra masa

Ako je u molekuli prisutan višeizotopni element, intenzitet signala za ione će odgovarati njegovoj izotopnoj raspodjeli. Primjerice ako molekula sadrži u svojoj strukturi klor koji ima izotope ³⁵Cl i ³⁷Cl tada će u spektru masa biti prisutna dva signala za molekulski ion u omjeru 3:1 jer je izotop ³⁵Cl tri puta više zastupljeniji od ³⁷Cl, udaljeni za dvije jedinice m/z (slika 102). Ako je u molekuli prisutan brom koji dolazi u obliku dva izotopa ⁷⁹Br i ⁸¹Br, tada će spektar pokazivati dva signala za molekulski ion u omjeru 1:1 jer su oba izotopa približno isto zastupljena, udaljeni za dvije jedinice m/z (slika 103).

Slika 102. Spektar masa klormetana

Slika 103. Spektar masa 2-brompropana

6.1. Spektar masa alkohola

Molekulski ion alkohola je mali ili nestabilan, te je prisutno cijepanje C-C veze uz kisik. Iz spektra se može vidjeti gubitak vode, alkilne skupine ili vodika.

Na slici 104 prikazan je spektar masa 3-pentanola ($C_5H_{12}O$, M = 88,15)

Slika 104. Spektar masa 3-pentanola

6.2. Spektar masa aldehida

U spektru masa aldehida prisutni su signali nastali fragmentacijom pri čemu se gubi pokrajnji lanac i nastaje oksonijev ion.

McLafferty-eva pregradnja

Cijepanje veza uz karbonilnu skupinu rezultira gubitkom vodika (molekulski ion manji za 1) ili gubitkom CHO (molekulski ion manji za 29). Na slici 105 prikazan je spektar masa 3-fenil-2-propenala (C_9H_8O , M = 132,16).

Slika 105. Spektar masa 3-fenil-2-propenala

6.3. Spektar masa alkana

U spektru masa alkana prisutni su signali gdje se može uočiti gubitak metilne skupine (M-15) ili metilenske (M-14) fragmentacijom.

Pik molekulskog iona obično je manjeg intenziteta. Fragmentacija nastaje niz pikova umanjenih za 14 (gubitak (CH₂)n).

Na slici 106 prikazan je spektar masa heksana (C_6H_{14} , M = 86,18)

Slika 106. Spektar masa heksana

6.4. Spektar masa amida

Primarni amidi pokazuju u spektru masa osnovni pik dobiven McLaffert-ijevim pregrađivanjem.

Na slici 107 prikazan je spektar masa 3-metilbutiramida ($C_5H_{11}NO$, M = 101,15).

Slika 107. Spektar masa 3-metilbutiramida

6.5. Spektar masa amina

U spektru masa amina pik molekulskog iona je paran broj, a kod alifatskih amina prevladava α -pregradnja.

Na slici 108 prikazan je spektar masa n-butilamina ($C_4H_{11}N$; M = 73,13).

Slika 108. Spektar masa n-butilamina

U spektru masa sekundarnih amina pik molekulskog iona je paran broj, a osnovni pik od C-C pregradnje. Na slici 109 prikazan je spektar masa n-metilbenzilamina ($C_8H_{11}N$; M = 121,18).

Slika 109. Spektar masa n-metilbenzilamina

6.6. Spektar masa aromatskih spojeva

U spektru masa fragmentacijom nastaje serija pikova m/e = 77, 65, 63, itd. Ako je prisutna benzilna jedinica fragmentacijom nastaje benzilni karbokation koji se pregradi u tropilijev ion, a izlaskom etina dobije se karakterističan pik m/e = 65.

Slika 110. Spektar masa naftalena

Primjer 1. Spektar masa benzena

Primjer 2. Spektar masa etilbenzena

Primjer 6. Spektar masa etil-benzoilacetata

6.7. Spektar masa karboksilnih kiselina i estera

U spektru masa karboksilnih kiselina prisutan je karakterističan pik m/z 45 i 44.

Pikovi zbog gubitka OH (molekulski ion umanjen za 17) i COOH (molekulski ion umanjen za 45).

Na slici 111 prikazan je spektar masa 2-butenske kiseline ($C_4H_6O_2$, M = 86,09).

Slika 111. Spektar masa 2-butenske kiseline

U spektru masa estera fragmenti nastaju zbog pucanja veze uz C=O (gubitak alkoksi skupine -OR) i pregradnje vodika.

Na slici 112 prikazan je spektar masa etil-acetata ($C_4H_8O_2$, M = 88,11).

Slika 112. Spektar masa etil-acetata

6.8. Spektar masa etera

U spektrima masa etera prisutni su signali nastali fragmentacijom C-C veze uz kisik (α -položaj), pri čemu se gubi alkilni radikal.

Na slici 113 prikazan je spektar masa etil-metil-etera (C_3H_8O , M = 60,10).

Slika 113. Spektar masa etil-metil-etera

6.9. Spektar masa halogenida

U spektrima masa vidi se gubitak halogena. Spektri masa spojeva koji sadrže klor ili brom imaju višestruke pikove zbog prisustva izotopa (35 Cl/ 37 Cl = 3:1 i za 79 Br/ 81 Br = 1:1). Molekulski ion spoja s klorom ima dva pika u omjeru 3:1, a spoj s bromom također dva pika u omjeru 1:1.

Na slici 114 prikazan je spektar 1-bromopropana (C_3H_7Br , M = 123,00).

Slika 114. Spektar masa 1-bromopropana

Na slici 115 prikazan je spektar masa klorbenzena.

6.10. Spektar masa ketona

 $McLafferty-eva \ pregradnja$ H_{0}^{+} H_{0}^{+} H_{0}^{+}

Na slici 116 prikazan je spektar masa 4-heptanona ($C_7H_{14}O$, M = 114,19).

Slika 116. Spektar masa 4-heptanona

7. KIROOPTIČKE METODE^{1,11}

Kirooptičke metode su optička mjerenja koja ovise o kiralnosti istraživanog materijala. Spoj je optički aktivan ako zakreće ravninu linearno polariziranog svjetla. To odgovara rotaciji vibracijskog smjera električnog vektora *E* svjetlosnog vala (slika 117).

Slika 117. Shematski prikaz optičke rotacije

Optičku rotaciju pokazuju kiralne kristalne strukture, poput kvarca ili cinabarita ili kiralne molekule (ili ioni). Molekule ili predmeti su kiralni ako nisu identične svojoj zrcalnoj slici, što podrazumijeva da ne posjeduju niti jedan element simetrije (os simetrije C_n , ravninu simetrije σ ili rotacijsko-refleksijsku os S_n). Mjerenjem optičke aktivnosti spoja potvrđuje se njegova kiralnost, tj. kiralni spoj zakreće ravninu polariziranog svjetla za određeni kut (α) pri određenoj valnoj duljini (λ) korištenog svjetla. Veličina kuta ovisi o valnoj duljini i obično se mjeri pri D-linijama natrijevog svjetla: 589,0 i 589,6 nm. Kut zakreta kiralne molekule α (°) u otopini mjeri se polarimetrom, a dan je jednadžbom:

$$[\alpha]^T = \frac{\alpha}{\gamma \cdot \ell}$$

gdje je *l* debljina sloja s otopinom kroz koji prolazi svjetlo, γ masena koncentracija otopine pri temperaturi *T*. Za usporedbu različitih optički aktivnih spojeva često se koristi zakretanje temeljeno na molekulskoj masi:

$$[\phi]_{\lambda}^{T} = \frac{100\alpha}{l \cdot c} = \frac{[\alpha]_{\lambda}^{T} \cdot M}{100}$$

Na temelju izmjerenog zakretanja može se odrediti enantiomerna čistoća: $\frac{E(+) - E(-)}{E(+) + E(-)}$

7.1. Kružni dikroizam (CD) i optička rotacijska disperzija (ORD)

Kružni dikroizam (engl. circular dichroism, CD) je spektroskopska metoda koja se uz optičku rotacijsku disperziju (ORD) koristi u proučavanju optički aktivnih spojeva, te daje informacije o kiralnosti molekule. CD spektroskopijom mogu se identificirati kiralni spojevi i odrediti njihova konfiguracija, predvidjeti sekundarna struktura proteina ili pratiti strukturne promjene kod proteina. Kirooptička svojstva molekula vezana uz optičku rotaciju i cirkularni dikroizam posljedica su interakcije polariziranog svjetla i kiralnog medija.

CD predstavlja razliku u apsorpciji lijevo cirkularno polariziranog svjetla (L-CPL) i desno cirkularno polariziranog svjetla (R-CPL) (slika 118) a nastaje kada molekula sadrži jedan ili više kiralnih kromofora (skupine koje apsorbiraju svjetlo).

kružni dikroizam = $\Delta A(\lambda) = A(\lambda)LCPL - A(\lambda)RCPL$, gdje je λ valna duljina

Slika 118. Dijagram linearno polariziranog i kružno polariziranog svjetla

Kružni dikroizam (CD) je spektroskopska tehnika u kojoj se mjeri kružni dikroizam molekula u rasponu valnih duljina. Uvelike se koristi u istraživanjima kiralnih molekula svih vrsta i veličina, posebice u istraživanju i analizi strukture ili konformacije makromolekula poput proteina (sekundarne strukture). Kružni dikroizam i optička rotacija dva su različita aspekta iste fizikalne pojave. Mjerenje ove pojave u UV-Vis području (200-800 nm) prikladno je za određivanje apsolutne konfiguracije organskih molekula.

Mjerenje kružnog dikroizma provodi se spektrometrom kružnog dikroizma (slika 119), koji mjeri naizmjenično apsorpciju L- i R-CPL obično pri frekvenciji od 50kHz i zatim računa signal kružnog dikroizma. Linearno polarizirano svjetlo prolazi kroz monokromator, a zatim se jedna valna duljina svjetla propusti kroz uređaj za moduliranje, obično fotoelastični modulator (PEM), koji pretvara linearno svjetlo u kružno polarizirano svjetlo. L-CP i R-CP naizmjenično prolazi kroz kiralni medij i mjeri se apsorpcija cirkularno polariziranog svjetla.

Slika 119. Shematski prikaz CD-spektrometra

Mjerenja se provode u vidljivom i ultra-ljubičastim području elektromagnetskog spektra praćenjem elektronskih prijelaza, te ako istraživana molekula sadrži kiralne kromofore tada dolazi do apsorpcije jednog CPL-a u većoj mjeri od drugog, i zabilježit će se CD signal kod određene valne duljine. CD signal može biti pozitivan ili negativan, ovisno o tome da li je L-CPL apsorbirano u većoj mjeri nego R-CPL (CD signal pozitivan) ili u manjoj mjeri (CD signal negativan).

Različito ponašanje kiralne molekule u lijevo i desno kružno polariziranom svjetlu temelj je kružnog dikroizma. Optička rotacija mjeri se nakon prolaska svjetla kroz optički aktivan medij. Kut rotacije α pri valnoj duljini λ je povezan s indeksom loma $n_{\rm L}$ i $n_{\rm R}$ prema Fresnelovoj jednadžbi: $\alpha = (n_{\rm L} - n_{\rm R}) (\pi/\lambda) \ell$

$$[\alpha]_{\lambda}^{T} = \frac{\alpha}{\gamma \cdot \ell} \qquad [\alpha]_{\lambda}^{T} = (\alpha / \rho \ell) \qquad \rho \text{- gustoća pri temperaturi T}$$

Specifični i molarni elipticitet definirani su za debljinu sloja kroz koji svjetlo prolazi i koncentraciju otopine: $[\psi] = \psi/C\ell$

$$[\theta] = [\psi] M/100$$
 M- molarna masa

Razlika u apsorpciji pri prolasku dviju kružno polariziranih komponenti kroz optički aktivan medij rezultira različitim ekstinkcijskim koeficijentima ε_L i ε_R i njihova razlika naziva se kružni dikroizam: $\varepsilon_L - \varepsilon_R$ i ovise o valnoj duljini λ .

Ovisnost indeksa loma lijevog i desnog enantiomera $(n_L - n_R)$ te njihovih ekstinkcija $(\varepsilon_L - \varepsilon_R)$ o valnoj duljini prikazuje se spektrima disperzije optičke rotacije (ORD – optical rotation dispersion) i spektrima kružnog dikroizma (CD) (slika 120).

Slika 120. Ovisnost indeksa loma lijevog i desnog enantiomera te njihovih ekstinkcija o valnoj duljini

Kombinacija nejednakih apsorpcija (cirkularni dikroizam) i nejednolikih brzina transmisije (optička rotacija) za lijevo i desno cirkularno polarizirano svjetlo se naziva Cottonovim efektom. Jednostavan Cottonov efekt pokazuje u CD spektru jedan maksimum (brijeg) i jedan minimum (udolinu). Kada je maksimum kod većih valnih duljina od minimuma za spektar se kaže da pokazuje pozitivan Cottonov efekt (slika 121).

Slika 121. Usporedno prikazani CD i ORD spektri

Lijevi i desni enantiomer istog spoja imaju isti izotropni apsorpcijski spektar, ali su njihovi ORD i CD spektri zrcalno simetrični. Na primjeru spektra cirkularnog dikroizma (slika 122) uzorka može se uočiti više CD pikova, iz čega se vidi kako se CD mijenja s valnom duljinom, i da CD spektar može pokazivati i pozitivne i negativne pikove. Iako CD i ORD spektri daju iste informacije, interpretacija CD spektara je jednostavnija.

7.2. Primjeri CD i ORD spektara

Primjer 1. CD spektar (+)-3-metilcikloheksanona

Primjer 2. ORD spektar (+)-3-metilcikloheksanona

Primjer 4. CD i ORD spektri (1*S*)-(+)-kamfor-10-sulfonske kiseline i (1*R*)-(-)-kamfor-10-sulfonske kiseline

Primjer 6. CD spektar β -lista

Primjer 8. CD spektri primarne i sekundarnih struktura proteina.

8. ZADATCI ZA VJEŽBU^{1-5, 12-15}

- 1. Koliko kemijski ekvivalentnih protona imaju spojevi?
- a) 1,3-ciklopentadien
- b) 1-butin
- c) propilbenzen
- d) p-aminobenzojeva kiselina
- e) 4-aminobutanska kiselina
- f) anilin
- g) benzaldehid
- h) Benzilalkohol
- i) Benzilbromid
- j) 3-benzil-2,6-dimetilfenol
- k) m-fluorfenol
- 2. Koliko kemijski neekvivalentnih protona imaju spojevi?

truktura.

- a) p-nitrotoluen
- b) 1-brombutan
- c) Fenol
- d) 2-brombutan
- e) 2-brom-2-metilbutan
- f) 2-brom-3-metilbutan
- g) 1,3-butadien
- h) Butan
- i) 1-buten
- j) Butanal
- k) Butanska kiselina
- 3. Koliko signala u ¹H NMR spektru pokazuju spojevi?
- a) 1-butanol
- b) 2-butanol
- c) Butilamin
- d) Butilbromid
- e) 2-butin
- f) Klorciklobutan

skin spojevo

- g) 1-klor-2,4-dinitrobenzen
- h) Butilmetileter
- i) 2-klor-2-metilpropan
- j) 2-butanon
- k) dietileter
- 4. Predložite strukturu spoja na temelju molekulske formule i ¹H NMR spektra.

5. Predložite strukturu spoja na temelju molekulske formule i ¹H NMR spectra.

6. Predložite strukturu spoja na temelju molekulske formule C_3H_6O i 1H NMR spektra.

8. Kojem od predloženih spojeva pripada spektar??

9. Predložite ¹H NMR spektar

a) 1,3-ciklopentadien

b) 1-butin

c) Propilbenzen

d) p-aminobenzojeva kiselina

e) 4-aminobutanska kiselina

f) Anilin

g) Benzaldehid

h) Benzilalkohol

i) Benzilbromid

j) 3-benzil-2,6-dimetilfenol

k) m-fluorfenol

l) p-nitrotoluen

m) 1-brombutan

n) Fenol

o) 2-brombutan

p) 2-brom-2-metilbutan

r) 2-brom-3-metilbutan

s) 1,3-butadien

white or constitution of the second 10. Koliko signala u¹H NMR spektru pokazuju spojevi i koji su njihovi multipliciteti?

a) Butan

b) 1-buten

c) Butanal

d) Butanska kiselina

e) 1-butanol

f) 2-butanol

g) Butilamin

h) Butilbromid

i) 2-butin

j) 1-klor-2,4-dinitrobenzen

k) Butilmetileter

1) 2-klor-2-metilpropan

m) 2-butanon

11. Predložite strukturu spoja molekulske formule $C_4H_8O_2$ na temelju prikazanog ¹H NMR spektra.

12. Predložite strukturu spoja molekulske formule $C_8H_8O_2$ na temelju prikazanog ¹H NMR spektra.

13. Predložite strukturu spoja molekulske formule $C_4H_7O_2Br$ na temelju prikazanog ¹H NMR spektra.

14. Predložite strukturu spoja molekulske formule C_6H_4BrI na temelju prikazanog ¹H NMR spektra.

15. Predložite strukturu spoja molekulske formule C_3H_8O na temelju prikazanog ¹H NMR spektra.

16. Predložite strukturu spoja molekulske formule $C_{14}H_{14}$ na temelju prikazanog ¹H NMR spektra.

17. Predložite strukturu spoja molekulske formule $C_{10}H_{10}O_2$ na temelju prikazanog ¹H NMR spektra.

18. Predložite strukturu spoja molekulske formule $C_9H_{10}O_3$ na temelju prikazanog ¹H NMR spektra.

19. Predložite strukturu spoja molekulske formule $C_{10}H_{10}O_2$ na temelju prikazanog ¹H NMR spektra.

20. Predložite strukturu spoja molekulske formule $C_6H_{12}O_2$ na temelju prikazanog ¹H NMR spektra.

21. Predložite strukturu spoja molekulske formule $C_6H_6O_2$ na temelju prikazanog ¹H NMR spektra.

22. Predložite strukturu spoja molekulske formule C_6H_6NBr na temelju prikazanog ¹H NMR spektra.

23. Predložite strukturu spoja molekulske formule C₇H₇OBr na temelju prikazanog ¹H NMR spektra.

24. Predložite strukturu spoja molekulske formule $C_6H_5NO_3$ na temelju prikazanog ¹H NMR spektra.

25. Predložite strukturu spoja molekulske formule $C_8H_{10}O$ na temelju prikazanog ¹H NMR spektra.

26. Predložite strukturu spoja molekulske formule $C_7H_{16}O_4$ na temelju prikazanog ¹H NMR spektra.

27. Predložite strukturu spoja molekulske formule C_8H_{10} na temelju prikazanog ¹H NMR spektra.

28. Predložite strukturu spoja molekulske formule C_4H_8O na temelju prikazanog ¹H NMR spektra.

29. Predložite strukturu spoja molekulske formule C_3H_7OCl na temelju prikazanog ¹H NMR spektra.

30. Predložite strukturu spoja molekulske formule C_5H_8O na temelju prikazanog ¹H NMR spektra.

31. Predložite strukturu spoja molekulske formule C_3H_7Cl na temelju prikazanog ¹H NMR spektra.

32. Predložite strukturu spoja molekulske formule $C_9H_{10}O_2$ na temelju prikazanog ¹H NMR spektra

33. Predložite strukturu spoja molekulske formule $C_{10}H_{10}O_2$ na temelju prikazanog ¹³C NMR spektra.

34. Predložite strukturu spoja molekulske formule $C_4H_8O_2$ na temelju prikazanog ¹³C NMR spektra.

35. Predložite strukturu spoja molekulske formule $C_8H_8O_2$ na temelju prikazanog ¹³C NMR spektra.

36. Predložite strukturu spoja molekulske formule C₄H₇O₂Br na temelju prikazanog ¹³C NMR spektra.

37. Predložite strukturu spoja molekulske formule C₆H₄BrI na temelju prikazanog ¹³C NMR spektra.

38. Predložite strukturu spoja molekulske formule C₃H₈O na temelju prikazanog ¹³C NMR spektra.

39. Predložite strukturu spoja molekulske formule $C_{14}H_{14}$ na temelju prikazanog ¹³C NMR spektra.

40. Predložite strukturu spoja molekulske formule $C_{10}H_{10}O_2$ na temelju prikazanog ¹³C NMR spektra.

41. Predložite strukturu spoja molekulske formule C₉H₁₀O₃ na temelju prikazanog ¹³C NMR spektra.

42. Predložite strukturu spoja molekulske formule C₆H₁₂O na temelju prikazanog ¹³C NMR spektra.

43. Predložite strukturu spoja molekulske formule C₆H₁₂O₂ na temelju prikazanog ¹³C NMR spektra.

44. Predložite strukturu spoja molekulske formule C₆H₆O₂ na temelju prikazanog ¹³C NMR spektra.

45. Predložite strukturu spoja molekulske formule C₆H₆NBr na temelju prikazanog ¹³C NMR spektra.

46. Predložite strukturu spoja molekulske formule C₇H₇Br na temelju prikazanog ¹³C NMR spektra.

47. Predložite strukturu spoja molekulske formule C₇H₇OBr na temelju prikazanog ¹³C NMR spektra.

48. Predložite strukturu spoja molekulske formule C₄H₆O₂ na temelju prikazanog ¹³C NMR spektra.

49. Predložite strukturu spoja molekulske formule C₆H₁₀ na temelju prikazanog ¹³C NMR spektra

50. Predložite ¹³C NMR spektar s odgovarajućim kemijskim pomacima koristeći se tablicom

- 51. Koji spoj predstavlja spektar?
- a) mravlja kiselina
- b) 1-propanol
- c) Etanol
- d) Metanol
- e) izopropilni alkohol

53. Koji spoj predstavlja spektar?

- a) 1-heksanol
- b) 1-pentanol
- c) 2-metil-2-butanol
- d) 2-pentanol
- e) 1-butanol

55. Koji spoj predstavlja spektar?

- a) 2-pentanol
- b) 2-metil-2-propanol
- c) 1-butanol
- d) 2-metil-1-propanol
- e) 2-butanol

152

57. Koji spoj predstavlja spektar?

- a) 2-propenal
- b) 2-metil propanal
- c) Pentanal
- d) 2-okso-propanal
- e) butanal

59. Koji spoj predstavlja spektar?

- a) 2-metil propanal
- b) Butanal
- c) 2-okso-propanal
- d) 2-propenal
- e) Pentanal

61. Molekulski ion u spektru je 58. Koja alkilna skupina se izgubila dajući intenzivan fragment m/z 43?

- a) metil (CH₃)
- b) etil (CH₃CH₂)
- c) propil (CH₃CH₂CH₂)

63. Koji spoj predstavlja spektar?

- a) Heksan
- b) 1-penten
- c) 2-metil pentan
- d) 2,2-dimetil propan
- e) Pentan

- a) Oktan
- b) 2,2-dimetil pentan
- c) 2-metil heksan
- d) 2,2-dimetil butan
- e) Heptan

- a) N,N-dietilacetamid
- b) N,N-diizopropilformamid
- c) Pentanamid
- d) N-butilacetamid
- e) Heksanamid

69. Koji spoj predstavlja spektar?

- a) Butanamid
- b) 2,2-dimetilpropanamid
- c) N,N-dimetilacetamid
- d) Propanamid

- a) 1-heksanamin
- b) N-metil-1-butanamin
- c) 1-pentanamin
- d) 2-metil-2-butanamin
- e) 1-butanamin

73. Koji spoj predstavlja spektar?

- a) N-metil-1-butanamin
- b) 2-metil-2-butanamin
- c) 1-pentanamin
- d) 1-heksanamin

- a) Metil-format
- b) Octena kiselina
- c) hidroksi acetonitrile
- d) 2-propenska kiselina
- e) Butanska kiselina

KURA

76. Koji spoj predstavlja spektar?

- a) Butanska kiselina
- b) Heptanska kiselina
- c) Benzojeva kiselina
- d) Oktanska kiselina
- e) 2-metil propanska kiselina

- a) Ciklopentan karboksilna kiselina
- b) 3,3-dimetil-butanska kiselina
- c) 2-etil-butanska kiselina
- d) Benzojeva kiselina
- e) 2,2-dimetil-butanska kiselina

- a) Etil-metanoat
- b) Metil-etanoat
- c) Propanska kiselina
- d) Etil-etanoat
- e) 2-propenska kiselina

- a) Izopropil-etanoat
- b) Butil-format
- c) Etil-etanoat
- d) Etil-propionat
- e) Etil-butanoat

- a) Etil-pentanoat
- b) Metil-butanoat
- c) etil-butanoat
- d) 2,2-dimetil propanska kiselina
- e) Butil-etanoat

- a) Metoksietan
- b) Metoksieten
- c) Dimetil-eter
- d) Formamid

- a) Metil-propil-eter
- b) 1-metoksibutan
- c) 2-metoksi propan
- d) Tetrahidrofuran
- e) Etil-eter

- a) Klormetan
- b) Difluormetan
- c) metilenklorid

6Ô.

91. Koji spoj predstavlja spektar?

- a) Klormetan
- b) 2-klor-1,3-butadien
- c) Trifluoretan
- d) metilen klorid

- a) 4-heptanon
- b) 3-metil-2-butanon
- c) 3-pentanon
- d) 2-butanon
- e) 2-pentanon

- a) ciklobutanon
- b) 2-butanon
- c) 2-propanon
- d) 3-pentanon
- e) 1-hidroksi-2-propanon

- a) 3-metil-2-butanon
- b) 2-heksanon
- c) 4-metil-3-penten-2-on
- d) 3-metil-2-pentanon
- e) cikloheksanon

U sljedećoj skupini zadataka potrebno je odrediti strukturu spoja na temelju zadane molekulske formule, IR, masenih, ¹H i ¹³C NMR spektara.

1. $C_3H_5BrO_2$, M = 152

7. $C_6H_6O_2$, M = 110

11. C₃H₇OCl, M = 94

17. $C_6H_{12}O_2$, M = 116

18. $C_7H_5NO_4$, M = 167

19. $C_{13}H_{10}O_3$, M = 214

21. $C_9H_{10}O_3$, M = 166

23. $C_8H_9NO_2$, M = 151

24. $C_9H_{12}O_3$, M = 168

25. $C_9H_{10}O_3$, M = 166

27, $C_{14}H_{14}O_2$, M = 214

38. C₉H₁₀O₂, M= 150

40. C₈H₈O₂, M= 136

44. C₈H₁₄O₃, M= 158

Literatura

- 1. D. L. Pavia, G. M. LAmpman, G. S. Kriz, J. A. Vyvyan, *Introduction to Spectroscopy* (5. izd.), Cengage Learning, 2015.
- M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (2. izd.), Georg Thieme Verlag, 2007.
- 3. G. Gauglitz, T. Vo-Dinh, *Handbook of Spectroscopy*, Wiley-VCH Verlag GMBH&Co, Weinheim, 2003.
- R. M. Silverstein, F. X. Webster: Spectrometric Identification of Organic Compounds (6. izd.), J. Wiley&Sons, Inc., New York, 1998.
- 5. E. Pretsch, P. Buehlmann, C. Affoller: *Structure Determination of Organic Compounds, Tables of Spectral Data* (3. izd.), Springer, Verlag Berlin Heidelberg 2000.
- 6. https://www.chem.wisc.edu/areas/reich/nmr/05-hmr-02-delta.htm, pristupljeno 20.1.2016., 8:53.
- 7. P. Novak, T. Jednačak, Strukturna analiza spojeva spektroskopskim metodama, TIVA, 2014.
- 8. H. Friebolin: *Basic One- and Rwo-Dimensional NMR Spectroscopy* (3.izd.), Wiley-VCH Verlag GmbH, Weinheim, 1998.
- T.W.G. Solomons, C.B. Fryhle: Organic Chemistry (9. izd.), J. Wiley&Sons, New York, 2007.
- 10. J. Clayden, N. Greeves, S. Warren, P. Wothers: *Organic Chemistry* (1. izd.), Oxford University Press, 2000.
- http://www.chem.uci.edu/~dmitryf/manuals/Fundamentals/CD%20spectroscopy.pdf, pristupljeno 17.11.2015., 14:28.
- B. D. Smith, B. Boggess, J. Zajicek: *Organic Structure Elucidation*, University of Colorado, 1998.
- 13. http://www.chem.ucla.edu/~webspectra/index.html, pristupljeno 8.2.2011., 9:46.
- 14. http://www.nd.edu/~smithgrp/structure/workbook.html, pristupljeno 16.4.2011., 15:08.
- 15. http://www.stolaf.edu/depts/chemistry/courses/toolkits/380/js/nd/index.htm?2,

pristupljeno 10.1.2016., 11:40.