Name of the course	Chemical sensors and biosensors
Number of instruction hours	20
Outline of course/module content	Chemical sensors and biosensors - definitions,
	theoretical background, components of a sensing
	system, classification. Transducers:
	electrochemical, optical, electrical, thermal and
	mass transducers. Receptor part: mechanism of
	chemical and biological recognition, biomimetic systems, (bio)chemical selectivity, enzymatic
	biosensors, immobilization techniques, role of
	functional materials in sensing systems –
	polymers. Sensor analytical performance:
	selectivity, sensitivity, precision, accuracy,
	repeatability, reversibility, response time,
	stability. Electrochemical sensors and biosensors:
	potentiometric and amperometric: ion-selective
	electrodes (ISEs), modified electrodes,
	microelectrodes, standard electrode fabrication
	techniques, solid-state planar electrodes;
	conductometric sensors; FET (field effect
	transistor) sensors. Optical sensors and biosensors: techniques of optical detection,
	absorptiometry, UV-visible absorption spectroscopy; reflectometry, luminescence
	spectroscopy, light scattering techniques, direct
	and indirect methods, indicator based systems,
	fiber-optic chemical sensors and biosensors. Mass
	and thermal sensors: piezo-electric effect, surface
	acoustic waves, thermal sensors. Application of
	chemical sensors and biosensors: industrial
	processes, environmental and biomedical
	applications, wearable sensors. Functional
	(bio)chemical sensor interface architecture
	(materials and building principles); enabling
	micro and nano fabrication technologies, printed
	sensors. Highly integrated chemical sensing
	systems and microfluidics: micro-electro-
	mechanical systems (MEMS and Bio(MEMS),
	Micro-total-Analytical Systems (μTAS), Lab-on-a-
Description of instruction methods	chip systems, nanosensors, biochips. Lectures, supervisions and discussions, seminar
Description of instruction methods	presentations
Description of course/module requirements	Each student will be assigned one real chemical
	sensor problem usually related to the topic of
	their PhD thesis. Students have to propose a
	solution to the problem using knowledge and
	skills gained during the course. The results have to
	be presented to the group (20 min. presentation)
	and in a form of a written report.