Name of the course	Chemistry and polymer engeenering
Number of instruction hours	20
Outline of course/module	Polymer molecular structure: nonuniformity, molecular weight distributions and
content	averages, chemical composition distribution.
	Polymerization reactions: radical polymerization, step polymerization, ionic
	polymerization, ring-opening polymerization. Polymerization kinetics
	fundamentals. Kinetic parameters vs. molecular weight distribution relations.
	Polymerization thermodynamics.
	Physical chemistry of polymers. Ideal and real polymer chains, ideal chain models,
	configurations and conformations, macromolecular coil dimensions, excluded
	volume. Polymer solutions: swelling and dissolution of polymers, theta solvent,
	solubility parameter. Thermodynamics of polymer solutions: peculiarities of
	thermodynamic functions – enthalpy, entropy and Gibbs free energy of mixing.
	Thermodynamic stability, phase equilibria, phase diagrams. Theories of polymer
	solutions: Flory-Huggins theory, Prigogine theory, Flory new theory.
	Surface and interface effects in polymer systems, interactions at phase boundary,
	surface free energy. Surface modification in natural and synthetic polymer
	systems by surface treatment or by polymeric (plastomeric, elasomeric) and other
	(microfillers, nanofillers, compatibilizers, stabilizers) additives.
	Industrial polymerizations: bulk and solution polymerization, suspension
	polymerization, emulsion polymerization. Crosslinking reactions. Interfacial polymerization.
	Polymerization. Polymerization reactors, modeling at the macro-, meso- and microlevel. Modeling
	and optimization of the polymerization process according to preset product
	properties.
Description of instruction	Instruction methods adapted individually to the students: lectures and/or
methods	consultations, optional laboratory syntheses of polymeric materials.
Description of course/module	ormulation of the individual seminar paper related with the topic that is of the
requirements	scientific or professional importance for the student. Written examination.